开发者

Apply EuclideanDistance at a certain level in Mathematica

Please consider:

daList = {{{21, 18}, {20, 18}, {18, 17}, {20, 15}}, 
          {{21, 18}, {20, 18}, {21, 14}, {21, 14}}};

I would like to compute the distance between each point in the 2 sub-lists of that list:

Yet I need to use a Function to apply at the correct level:

Function[seqNo, 
         EuclideanDistance[#, {0, 0}] & /@ daList[[seqNo]]] /@ 
         Range[Length@daList]

out = {{3 Sqrt[85], 2 Sqrt[181], Sqrt[613], 25}, {3 Sqrt[85], 2 Sqrt[181], 
        7 Sqrt[13], 7 Sqrt[13]}}

Is there a way to avoid this heavy function there? To specify the level avoiding my Function with seqNo as argument? :

EuclideanDistance[#, {0, 0}] & /@ 开发者_运维百科daList

out={EuclideanDistance[{{21, 18}, {20, 18}, {18, 17}, {20, 15}}, {0, 0}], 
     EuclideanDistance[{{21, 18}, {20, 18}, {21, 14}, {21, 14}}, {0, 0}]}


Have you tried the Level specification in Map?

Map[EuclideanDistance[#, {0, 0}] &, daList, {2}]

gives

{{3 Sqrt[85],2 Sqrt[181],Sqrt[613],25},{3 Sqrt[85],2 Sqrt[181],7 Sqrt[13],7 Sqrt[13]}}


To complement the answer of @Markus: if your daList is very large and numerical, the following will be much faster (like 30x), although somewhat less general:

Sqrt@Total[daList^2,{3}]

Here is an example:

In[17]:= largeDaList = N@RandomInteger[30,{100000,4,2}];
In[18]:= Map[EuclideanDistance[#,{0,0}]&,largeDaList,{2}]//Short//Timing
Out[18]= {0.953,{{31.7648,34.6699,20.3961,31.305},<<99998>>,{<<18>>,<<2>>,0.}}}

In[19]:= Sqrt@Total[largeDaList^2,{3}]//Short//Timing
Out[19]= {0.031,{{31.7648,34.6699,20.3961,31.305},<<99998>>,{<<18>>,<<2>>,0.}}}

The reason is that functions like Power and Sqrt are Listable, and you push the iteration into the kernel. Functions like Map can also auto-compile the mapped function in many cases, but apparently not in this case.

EDIT

Per OP's request, here is a generalization to the case of non-trivial reference point:

refPoint = {3, 5};
Sqrt@Total[#^2, {3}] &@Transpose[Transpose[daList, {3, 2, 1}] - refPoint, {3, 2, 1}]

It is still fast, but not as concise as before. For comparison, here is the code based on Map- ping, which only needs a trivial modification here:

Map[EuclideanDistance[#, refPoint] &, daList, {2}]

The performance difference remains of the same order of magnitude, although the vectorized solution slows down a bit due to the need for non-trivial transpositions.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜