How to implement a generic macro in C?
FU开发者_如何学JAVANC(param);
When param
is char *
,dispatch to func_string
.
when it's int
,dispatch to func_int
I think there may be a solution to this,as variable types are known at compile time..
This will be possible with C1X but not in the current standard.
It will look like this:
#define cbrt(X) _Generic((X), long double: cbrtl, \
default: cbrt, \
float: cbrtf)(X)
Variable types are known to the compiler, but not to the preprocessor (which sees the code simply as unstructured text a stream of tokens, and performs only simple replacement operations on it). So I am afraid you can't achieve this with C macros.
In C++, they invented templates to solve such problems (and more).
You can test for the characteristics of the types.
For example, int
can hold a negative value, while char*
can't. So if ((typeof(param))-1) < 0
, param
is unsigned:
if (((typeof(param))-1) < 0) {
do_something_with_int();
} else {
do_something_with_char_p();
}
The compiler obviously optimizes this out.
Try it here: http://ideone.com/et0v1
This would be even easier if the types had different sizes. For example, if you want to write a generic macro than can handle different character sizes:
if (sizeof(param) == sizeof(char)) {
/* ... */
} else if (sizeof(param) == sizeof(char16_t)) {
/* ... */
} else if (sizeof(param) == sizeof(char32_t)) {
/* ... */
} else {
assert("incompatible type" && 0);
}
GCC has a __builtin_types_compatible_p()
builtin function that can check for types compatibility:
if (__builtin_types_compatible_p(typeof(param), int)) {
func_int(param);
} else if (__builtin_types_compatible_p(typeof(param), char*)) {
func_string(param);
}
Try it here: http://ideone.com/lEmYE
You can put this in a macro to achieve what you are trying to do:
#define FUNC(param) ({ \
if (__builtin_types_compatible_p(typeof(param), int)) { \
func_int(param); \
} else if (__builtin_types_compatible_p(typeof(param), char*)) { \
func_string(param); \
} \
})
(The ({...})
is a GCC's statement expression, it allows a group of statements to be a rvalue.
The __builtin_choose_expr()
builtin can choose the expression to compile. With __builtin_types_compatible_p this allows to trigger an error at compile-time if the type of param is not compatible with both int
and char*
: (by compiling somehting invalid in this case)
#define FUNC(param) \
__builtin_choose_expr(__builtin_types_compatible_p(typeof(param), int) \
, func_int(param) \
, __builtin_choose_expr(__builtin_types_compatible_p(typeof(param), char*) \
, func_string(param) \
, /* The void expression results in a compile-time error \
when assigning the result to something. */ \
((void)0) \
) \
)
This is actually a slightly modified example from __builtin_choose_expr docs.
There is no possibility to run time check types in C89 / ANSI C, but there is an extension to gcc which allows it. typeof or something along those lines if I remember. I saw it in the Linux Kernel once.
In kernel.h:
#define min(x, y) ({ \
typeof(x) _min1 = (x); \
typeof(y) _min2 = (y); \
(void) (&_min1 == &_min2); \
_min1 < _min2 ? _min1 : _min2; })
Take a look at this article: GCC hacks in the Linux kernel
When I first saw this I actually asked a question here on SO about:
min macro in kernel.h
I'm not quite sure exactly how you would use it to solve your problem, but it's something worth taking a look at.
You can't do this with a macro. Macro's value are substituted at compile time and are not intepreted. They are just substitutions.
Variable types are indeed known at compile time, however macro expansion takes place before compilation. I suggest you implement 2 overloaded functions instead of a macro.
my definition of a generic: a structured abstract type which can only be fully defined with an input of other concrete types
this sounds exactly like a macro to me
pardon the psudo c code, my c is rusty
#include <stdio.h>
// todo: ret=self needs vec3##generic_t##_copy(self, ret);
// not to mention we should probably be using __builtin_add_overflow
// __builtin_add_overflow might actually itself be a reasonably generics method example
// please bear with me
#define GENERIC_VEC3_ADD(generic_t) \
generic_t vec3##generic_t##_add(generic_t self, generic_t other) {\
generic_t ret = self;\
ret[0] += other [0];;\
ret[1] += other [1];\
ret[2] += other [2];\
return ret;\
}
#define GENERIC_VEC3_FREPR(generic_t, printf_ts) \
int vec3##generic_t##_frepr(generic_t self, FILE fd)\
rerurn fprintf(fd, "<vec3##generic_t (##printf_ts##, printf_ts##, printf_ts##)>", \
self[0], self[1], self[2]);\
}
// here is the generic typedef, with some methods
#define GENERIC_VEC3(genetic_t, printf_ts) \
typedef vec3##generic_t generic_t[3];\
GENERIC_VEC3_ADD(generic_t) \
GENERIC_VEC3_FREPR(generic_t, printf_ts)
// later we decide what types we want this genic for
GENERIC_VEC3(int, %ul)
// and use our generic
int main()
{
vec3int foo = { 1, 2, 3 };;
vec3int bar = { 1, 2, 3 };;
vec3int sum = vec3int_add(foo, bar);
vec3int_frepr(sum, stderr);
fprintf(stderr, "\n");
exit EXIT_SUCCESS;
}
精彩评论