physical disk space management of cassandra
Recently I have been looking into C开发者_如何学Goassandra from our new project's perspective and learned a lot from this community and its wiki too. But I have not found anything about about how updates are managed in Cassandra in terms of physical disk space management though it seems to be very much similar to record delete management using compaction.
Suppose there are 100 records with 5 column values each so when all changes would be flushed disk all records will be written adjacently and when delete operation is done then its marked in Memory table first and physically record is deleted after some time as set in configuration or when its full. And the compaction process claims the space.
Now question is that at one side being schema less there is no fixed number of columns at the the beginning but on the other side when compaction process takes place then.. does it put records adjacently on disk like traditional RDBMS to speed up the read process as for RDBMS its easy because they have to allocate fixed amount of space as per declaration of columns datatype.
But how Cassandra exactly makes the records placement on disk in compaction process (both for update/delete) to speed up the reads?
One more question related to compaction is that when there is no delete queries but there is an update query which updates an existent record with some variable length data or insert altogether a new column then how compaction makes its space available on disk between already existent data rows?
Rows and columns are stored in sorted order in an SSTable. This allows a compaction of multiple SSTables to output a new, (sorted) SSTable, with only sequential disk IO. This new SSTable will be outputted into a new file and freespace on the disks. This process doesn't depend on the number of rows of columns, just on them being stored in a sorted order. So yes, in all SSTables (even those resulting form compactions) rows and columns will be arranged in a sorted order on disk.
Whats more, as you hint at in your question, updates are no different from inserts - they do not overwrite the value on disk, but instead get buffered in a Memtable, then get flushed into a new SSTable. When the new SSTable eventually gets compacted with the SSTable containing the original value, the newer value will annihilate the old one - ie the old value will not be outputted from the compaction. Timestamps are used to decide which values is newest.
Deletes are handled in the same fashion, effectively inserted an "anti-value", or tombstone. The limitation of this process is that is can require significant space overhead. Deletes are effectively 'lazy, so the space doesn't get freed until some time later. Also, while the output of the compaction can be the same size as the input, the old SSTables cannot be deleted until the new one is completed, so this can reduce disk utilisation to 50%.
In the system described above, new values for an existing key can be a different size to the existing key without padding to some pre-determined length, as the new value does not get written over the old value on update, but to a new SSTable.
精彩评论