Querying Oracle table of high degree of parallelism results in full table scan
Well, the title described what I've just encountered recently with Oracle database.
Here's some background:
- Table in concern in partitioned by hash into 4 partitions.
- Parallel degree of the table is 4.
- Hash key equals PK.
- There is quite a number of rows in the table, around 200M.
- PK index is also partitioned (local partition).
- Parallel degree of the index is 1.
Okay now I've got a query behaves strangely as I change the parallel degree of the table.
If table degree is 4, it results in full table scan (coordinated parallel full table scan) as revealed by explain plan. Takes 30 minutes or more to complete the query.
If table degree is 1-3, it correctly make use of the PK index (range scan, single threaded) and returns result in 20 seconds.
If I set both table degree and index degree to 4, results in full table scan (same result as the first scenario in above).
This behavior, however, does not happen in another database where I have an nearly identical clone of the table. The only difference is number of records. The table in another database is of slightly smaller size (minus 1-2 million). The smaller table, also with degree of 4, does not runs into full table scan with the same query.
I've spent some time on Googling around and found the following things about parallel query:
From Oracle official doc
A high degree of parallelism for a table skews the optimizer toward full table scans over range scans. Examine the DEG开发者_Python百科REE column in ALL_TABLES for the table to determine the degree of parallelism.
And from http://www.toadworld.com/Portals/0/GuyH/Articles/Oracle%20Parallel%20SQL%20Part%201.pdf Parallel query should be applied when
The SQL performs at least one full table, index or partition scan
And from AskTom.com
Parallel query is suitable for a certain class of large problems: very large problems that have no other solution. Parallel query is my last path of action for solving a performance problem; it's never my first course of action.
It seems that parallel execution is designed for processing a very large scale of data when no other better solution exists. It attempts to give better performance by running things in parallel, with each CPU (process) dedicated to work on separated portion of data (block range, table partitions or index partitions). Such that it is not designed to speed up general query, or query that does not cover a sufficient portion of the whole table.
Is my above understanding correct that parallel should not be used as a mean to speed up general query?
If yes, is that also means that the best practice to turn off parallel (degree as 0) and enable for particular query/operation through hint or parallel clause?
And in addition to all, what should be the best practice for setting up PARALLEL? If what I want to do is give best read performance through multi-threading, what should the setup be?
Lots of questions here. Lots of thanks in advance.
As a general rule I agree with Tom. Our main base table is an approx 240m rows iot, plus other indexes, with somewhere between 10 and 1,000 insert, delete, update operations happening 24 hours a day. We generally get information out of it in split seconds and then if we want a lot of information go for the full scan and deal with the 2.5 hours it takes. In answer to some of your questions, if you're going to be doing more large queries than small ones then go with the partition. If not then don't.
For your specific query, parallelism likely isn't your biggest problem. The new estimated cost and time of a query will be very roughly equal to the original cost divided by the degree of parallelism. The optimizer could be wrong here; for example, if you only have one hard drive then the new plan probably won't be any faster at all. But a 4x estimate mistake shouldn't lead to a 90x performance difference. This leads me to believe that your plan was already on the brink of failure, and this just tipped it over. How close are the estimated and actual cardinalities of your non-parallel plan? Whatever is causing those differences might be responsible for the bulk of your problem.
For your more general questions, there are no simple answers. There are several dozen things you may need to consider for parallelism, only you can know which ones will apply to your situation. Your best bet is to stop trying to Google it, and instead read the manual. The Using Parallel Execution chapter in the Data Warehousing Guide is a good place to start.
Degree of a relation or table in SQL means number of attribute in a relation. For Example: If a relation in SQL has three rows and four columns then its degree in four. Simply we can say that number of columns of a relation called its degree.
精彩评论