开发者

Step-by-step instructions for updating an (SQL Server) database?

Just a question about best-practices when up开发者_如何学Gograding an existing database. Assuming there will be all kinds of modifications to the data itself, the structure, the relations, additional columns, disappearing columns and whatever more.

My problem is a simple one. I'm working on a project that will use SQL Server. No problem there, since I'm enough of an expert to handle this. But this project will be upgraded later on and I need to specify a protocol that needs to be followed by the upgrade mechanism. Basically, this protocol needs to be followed when creating upgrade scripts...

Right now, I have these simple steps:

  1. Add the new columns to the tables.
  2. Add constraints to the new columns.
  3. Add new tables.
  4. Drop constraints where needed.
  5. Drop columns that need to be removed.
  6. Drop tables that need to be removed.

Somehow, this list feels incomplete. Is there a more extended list somewhere describing the proper steps which needs to be followed during an upgrade?

Also, is it always possible to do a complete upgrade within a single database transaction (with SQL Server) or are there breakpoints that need to be included within the protocol where one transaction should end and another one starts?


While automated tools will provide a nice, automated solution, I still can't really use them. The development team working on this system has 4 developers, each with their own database on their local system. Every developer keeps track of their own updates to the structure and keeps track of them by generating both an Upgrade and Downgrade script for his own modifications, both for structural changes and data changes. These scripts can then be used by the other developers to keep their own system up-to-date. Whenever the system is going to be released, those scripts are all merged into one big script.

The system does not include any stored procedures or other "special" features. The database is just that: a data storage with just tables and relations between them. No roles, no users, no stored procedures, no triggers, no complex datatypes...


The DB is used by an application where users work from 9-to-5 so shutting down can be done easily, including upgrades for the clients. We also add a version number to the database and applications will check if they're linked to the correct database version.

During development, all developers use their own database instance, which they can fully control. Since we're not the ones who use the application, we tend to develop for the Express edition, not any more expensive one. To be honest, we don't develop our application to support a lot of users, but we'll inform our users that since it uses SQL Server, they could install the system on a bigger SQL Server platform, according to their own needs. They will need their own DBA for this, though. We do have a bigger SQL Server available for ourselves, which we also use for our own web interface, but this server is located in a special dataserver where it is being maintained for us, not by us.

The project previously used MS Access for it's data storage and was intended for single-user development, but as it turned out, many users still decided to share their databases and this had shown that the datamodel itself is reliable enough for multi-user environments. So we migrated to SQL Server to support smaller offices with 3 or more users and some big organisation who will have 500 or more users at the same time.

Since we need to keep the cost of the software low, we don't have a big budget to spend on expensive tools or a more expensive server.


Check out Red-Gate's SQL Compare (structure comparison), SQL Data Compare (data comparison), and SQL Packager (for packaging up updates scripts into a C# project or a .NET executable).

They provide a nice, clean, fully functional and easy-to-use solution for all your database upgrade needs. They're well worth their license fees - that pays for itself in a few weeks or months.

Highly recommended!


In my opinion, it's an absolute bear doing these manually. For Microsoft SQL Server, I'd recommend using the Database editiion of Team System, since it includes complete source control capabilities for your database, and can automatically build your scripts for upgrading/downgrading versions.

Another option is SQLCompare with Redgate, which can also handle these kinds of upgrades/downgrades, and will result in a very nice SQL script. I've used both, and keeping the historic scripts has helped us troubleshoot issues and resolve many a mystery.

If you are working with a manual script as above, don't forget to also account for SP changes in your scripts. Also, any hand-edited script should be able to be executed multiple times on a database - i.e. if your script includes a table creation or drop, be sure to check for existance first, otherwise your script will fail if executed back to back.

Again, while it's possible to build a manual protocol I'd still fall back on using one of the purpose-built tools out there, and both Team System and SQL Compare will be able to output scripts that you could include as part of an installation/upgrade package.


With database updates I always believe it should be all or nothing. If any of the DB updates fail your application will be left in an unknown state that could be harmful to the data so I think it is best practice to either apply them all or none (1 transaction around them all).

I also like to backup the database before applying updates so that if anything does go wrong the database can be rolled back (this has saved me numerous times when working with live data).

Hope this helps.


Best practices for upgrading a production database schema actually look pretty bad on the surface. Unless you can completely shut down your system for the upgrade, which is often not possible, your changes all need to be backwards compatible. If you have many clients accessing the database, you can't update them all simultaneously, so any schema changes you make need to allow old code to run.

That means never renaming a column, and making all new columns nullable. This doesn't mean you leave it like that forever. You write two scripts, one for the initial change, which is backwards compatible, then another to clean things up after all clients have been updated.

Automated tools are great for validation of schemas, but they are not so good when it comes to actually modifying a complex system. You should break your changes up into many small, discrete change scripts so each can be run manually. If there's a failure, it's easier to pinpoint the cause and fix it. Basically, each feature gets its own script. Give each a unique name and then store that name in the database itself when you run the script so you can query the database to find out what's been run and what hasn't. This is invaluable when you have instances on developer's machines, test servers, production, etc.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜