binning continuous variables by IV value in R
I am building a logistic regression model in R. I want to bin continuous predictors in an optimal w开发者_运维知识库ay in relationship to the target variable. There are two things that I know of:
the continuous variables are binned such that its IV (information value) is maximized
maximize the chi-square in the two way contingency table -- the target has two values 0 and 1, and the binned continuous variable has the binned buckets
Does anyone know of any functions in R that can perform such binning?
Your help will be greatly appreciated.
For the first point, you could bin using the weight of evidence (woe) with the package woebinning which optimizes the number of bins for the IV
library(woeBinning)
# get the bin cut points from your dataframe
cutpoints <- woe.binning(dataset, "target_name", "Variable_name")
woe.binning.plot(cutpoints)
# apply the cutpoints to your dataframe
dataset_woe <- woe.binning.deploy(dataset, cutpoint, add.woe.or.dum.var = "woe")
It returns your dataset with two extra columns
- Variable_name.binned which is the labels
- Variable_name.woe.binned which is the replaced values that you can then parse into your regression instead of Variable_name
For the second point, on chi2, the package discretization seems to handle it but I haven't tested it.
The methods used by regression splines to set knot locations might be considered. The rpart package probably has relevant code. You do need to penalize the inferential statistics because this results in an implicit hiding of the degrees of freedom expended in the process of moving the breaks around to get the best fit. Another common method is to specify breaks at equally spaced quantiles (quartiles or quintiles) within the subset with IV=1. Something like this untested code:
cont.var.vec <- # names of all your continuous variables
breaks <- function(var,n) quantiles( dfrm[[var]],
probs=seq(0,1,length.out=n),
na.rm=TRUE)
lapply(dfrm[ dfrm$IV == 1 , cont.var.vec] , breaks, n=5)
s
etwd("D:")
rm(list=ls())
options (scipen = 999)
read.csv("dummy_data.txt") -> dt
head(dt)
summary(dt)
mydata <- dt
head(mydata)
summary(mydata)
##Capping
for(i in 1:ncol(mydata)){
if(is.numeric(mydata[,i])){
val.quant <- unname(quantile(mydata[,i],probs = 0.75))
mydata[,i] = sapply(mydata[,i],function(x){if(x > (1.5*val.quant+1)){1.5*val.quant+1}else{x}})
}
}
library(randomForest)
x <- mydata[,!names(mydata) %in% c("Cust_Key","Y")]
y <- as.factor(mydata$Y)
set.seed(21)
fit <- randomForest(x,y,importance=T,ntree = 70)
mydata2 <- mydata[,!names(mydata) %in% c("Cust_Key")]
mydata2$Y <- as.factor(mydata2$Y)
fit$importance
####var reduction#####
vartoremove <- ncol(mydata2) - 20
library(rminer)
#####
for(i in 1:vartoremove){
rf <- fit(Y~.,data=mydata2,model = "randomForest", mtry = 10 ,ntree = 100)
varImportance <- Importance(rf,mydata2,method="sensg")
Z <- order(varImportance$imp,decreasing = FALSE)
IND <- Z[2]
var_to_remove <- names(mydata2[IND])
mydata2[IND] = NULL
print(i)
}
###########
library(smbinning)
as.data.frame(mydata2) -> inp
summary(inp)
attach(inp)
rm(result)
str(inp)
inp$target <- as.numeric(inp$Y) *1
table(inp$target)
ftable(inp$Y,inp$target)
inp$target <- inp$target -1
result= smbinning(df=inp, y="target", x="X37", p=0.0005)
result$ivtable
smbinning.plot(result,option="badrate",sub="test")
summary(inp)
result$ivtable
boxplot(inp$X2~inp$Y,horizontal=T, frame=F, col="red",main="Distribution")
###Sample
require(caTools)
inp$Y <- NULL
sample = sample.split(inp$target, SplitRatio = .7)
train = subset(inp, sample == TRUE)
test = subset(inp, sample == FALSE)
head(train)
nrow(train)
fit1 <- glm(train$target~.,data=train,family = binomial)
summary(rf)
prediction1 <- data.frame(actual = test$target, predicted = predict(fit1,test ,type="response") )
result= smbinning(df=prediction1, y="actual", x="predicted", p=0.005)
result$ivtable
smbinning.plot(result,option="badrate",sub="test")
tail(prediction1)
write.csv(prediction1 , "test_pred_logistic.csv")
predict_train <- data.frame(actual = train$target, predicted = predict(fit1,train ,type="response") )
write.csv(predict_train , "train_pred_logistic.csv")
result= smbinning(df=predict_train, y="actual", x="predicted", p=0.005)
result$ivtable
smbinning.plot(result,option="badrate",sub="train")
####random forest
rf <- fit(target~.,data=train,model = "randomForest", mtry = 10 ,ntree = 200)
prediction2 <- data.frame(actual = test$target, predicted = predict(rf,train))
result= smbinning(df=prediction2, y="actual", x="predicted", p=0.005)
result$ivtable
smbinning.plot(result,option="badrate",sub="train")
###########IV
library(devtools)
install_github("riv","tomasgreif")
library(woe)
##### K-fold Validation ########
library(caret)
cv_fold_count = 2
folds = createFolds(mydata2$Y,cv_fold_count,list=T);
smpl = folds[[i]];
g_train = mydata2[-smpl,!names(mydata2) %in% c("Y")];
g_test = mydata2[smpl,!names(mydata2) %in% c("Y")];
cost_train = mydata2[-smpl,"Y"];
cost_test = mydata2[smpl,"Y"];
rf <- randomForest(g_train,cost_train)
logit.data <- cbind(cost_train,g_train)
logit.fit <- glm(cost_train~.,data=logit.data,family = binomial)
prediction <- data.f
rame(actual = test$Y, predicted = predict(rf,test))
精彩评论