开发者

When creating an intermediary value should I store it?

I am trying to learn F# so I paid a visit to Project Euler and I am currently working on Problem 3.

The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143?

Some things to consider:

  1. My first priority is to learn good functional habits.
  2. My second priority is I would like it to be fast and efficient.

Within the following code I have marked the section this question is regarding.

let isPrime(n:int64) = 
    let rec check(i:int64) = 
        i > n / 2L or (n % i <> 0L && check(i + 1L))
    check(2L) 

let greatestPrimeFactor(n:int64) =
    let nextPrime(prime:int64):int64 = 
        seq { for i = prime + 1L to System.Int64.MaxValue do if isPrime(i) then yield i }  
        |> Seq.skipWhile(fun v -> n % v <> 0L) 
        |> Seq.hd
    let rec findNextPrimeFactor(number:int64, prime:int64):int64 =
        if number = 1L then prime else 
            //************* No variable
            (fun p -> findNextPrimeFactor(number / p, p))(nextPrime(prime))    
            //*************               
            //************* Variable
            let p = nextPrime(prime)
            findNextPrimeFactor(number / p, p) 
            //*************
    findNextPrimeFactor(n, 2L) 

Update

Based off some of the feedback I have refactored the code to be 10 times faster.

module Problem3

module private Internal =
    let execute(number:int64):int64 = 
        let rec isPrime(value:int64, current:int64) = 
            current > value / 2L or (value % current <> 0L && isPrime(value, current + 1L)开发者_运维百科)   
        let rec nextPrime(prime:int64):int64 = 
            if number % prime = 0L && isPrime(prime, 2L) then prime else nextPrime(prime + 1L)       
        let rec greatestPrimeFactor(current:int64, prime:int64):int64 =
            if current = 1L then prime else nextPrime(prime + 1L) |> fun p -> greatestPrimeFactor(current / p, p)
        greatestPrimeFactor(number, 2L)


let execute() = Internal.execute(600851475143L)

Update

I would like to thank everyone for there advice. This latest version is a compilation of all the advice I received.

module Problem3

module private Internal =
    let largestPrimeFactor number = 
        let rec isPrime value current = 
            current > value / 2L || (value % current <> 0L && isPrime value (current + 1L))   
        let rec nextPrime value =
            if number % value = 0L && isPrime value 2L then value else nextPrime (value + 1L) 
        let rec find current prime =
            match current / prime with
            | 1L -> prime
            | current -> nextPrime (prime + 1L) |> find current
        find number (nextPrime 2L)            

let execute() = Internal.largestPrimeFactor 600851475143L


Functional programming becomes easier and more automatic with practice, so don't sweat it if you don't get it absolutely right on the first try.

With that in mind, let's take your sample code:

let rec findNextPrimeFactor(number:int64, prime:int64):int64 =
        if number = 1L then prime else 
            //************* No variable
            (fun p -> findNextPrimeFactor(number / p, p))(nextPrime(prime))    
            //*************               
            //************* Variable
            let p = nextPrime(prime)
            findNextPrimeFactor(number / p, p) 
            //*************

Your no variable version is just weird, don't use it. I like your version with the explicit let binding.

Another way to write it would be:

nextPrime(prime) |> fun p -> findNextPrimeFactor(number / p, p)

Its ok and occasionally useful to write it like this, but still comes across as a little weird. Most of the time, we use |> to curry values without needing to name our variables (in "pointfree" style). Try to anticipate how your function will be used, and if possible, re-write it so you can use it with the pipe operator without explicit declared variables. For example:

let rec findNextPrimeFactor number prime =
    match number / prime with
    | 1L -> prime
    | number' -> nextPrime(prime) |> findNextPrimeFactor number'

No more named args :)


Ok, now that we have that out of the way, let's look at your isPrime function:

let isPrime(n:int64) = 
    let rec check(i:int64) = 
        i > n / 2L or (n % i <> 0L && check(i + 1L))
    check(2L) 

You've probably heard to use recursion instead of loops, and that much is right. But, wherever possible, you should abstract away recursion with folds, maps, or higher order functions. Two reasons for this:

  1. its a little more readable, and

  2. improperly written recursion will result in a stack overflow. For example, your function is not tail recursive, so it'll blow up on large values of n.

I'd rewrite isPrime like this:

let isPrime n = seq { 2L .. n / 2L } |> Seq.exists (fun i -> n % i = 0L) |> not

Most of the time, if you can abstract away your explicit looping, then you're just applying transformations to your input sequence until you get your results:

let maxFactor n =
    seq { 2L .. n - 1L }                        // test inputs
    |> Seq.filter isPrime                       // primes
    |> Seq.filter (fun x -> n % x = 0L)         // factors
    |> Seq.max                                  // result

We don't even have intermediate variables in this version. Coolness!


My second priority is I would like it to be fast and efficient.

Most of the time, F# is going to be pretty comparable with C# in terms of speed, or it's going to be "fast enough". If you find your code takes a long time to execute, it probably means you're using the wrong data structure or a bad algorithm. For a concrete example, read the comments on this question.

So, the code I've written is "elegant" in the sense that its concise, gives the correct results, and doesn't rely on any trickery. Unfortunately, its not very fast. For start:

  • it uses trial division to create a sequence of primes, when the Sieve of Eratosthenes would be much faster. [Edit: I wrote a somewhat naive version of this sieve which didn't work for numbers larger than Int32.MaxValue, so I've removed the code.]

  • read Wikipedia's article on the prime counting function, it'll give you pointers on calculating the first n primes as well as estimating the upper and lower bounds for the nth prime.

[Edit: I included some code with a somewhat naive implementation of a sieve of eratosthenes. It only works for inputs less than int32.MaxValue, so it probably isn't suitable for project euler.]


Concerning "good functional habit" or rather good practice I see three minor things. Using the yield in your sequence is a little harder to read than just filter. Unnecessary type annotations in a type inferred language leads to difficult refactoring and makes the code harder to read. Don't go overboard and try to remove every type annotation though if you're finding it difficult. Lastly making a lambda function which only takes a value to use as a temp variable reduces readability.

As far as personal style goes I prefer more spaces and only using tupled arguments when the data makes sense being grouped together.

I'd write your original code like this.

let isPrime n = 
    let rec check i = 
        i > n / 2L || (n % i <> 0L && check (i + 1L))
    check 2L

let greatestPrimeFactor n =
    let nextPrime prime = 
        seq {prime + 1L .. System.Int64.MaxValue}
        |> Seq.filter isPrime
        |> Seq.skipWhile (fun v -> n % v <> 0L) 
        |> Seq.head

    let rec findNextPrimeFactor number prime =
        if number = 1L then 
            prime 
        else 
            let p = nextPrime(prime)
            findNextPrimeFactor (number / p) p

    findNextPrimeFactor n 2L

Your updated code is optimal for your approach. You would have to use a different algorithm like Yin Zhu answer to go faster. I wrote a test to check to see if F# makes the "check" function tail recursive and it does.


the variable p is actually a name binding, not a variable. Using name binding is not a bad style. And it is more readable. The lazy style of nextPrime is good, and it actually prime-test each number only once during the whole program.

My Solution

let problem3 = 
    let num = 600851475143L
    let rec findMax (n:int64) (i:int64) =
        if n=i || n<i then
            n
        elif n%i=0L then
            findMax (n/i) i
        else
            findMax n (i+1L)
    findMax num 2L

I basically divides num from 2, 3, 4.. and don't consider any prime numbers. Because if we divides all 2 from num, then we won't be able to divide it by 4,8, etc.

on this number, my solution is quicker:

> greatestPrimeFactor 600851475143L;;
Real: 00:00:01.110, CPU: 00:00:00.702, GC gen0: 1, gen1: 1, gen2: 0
val it : int64 = 6857L
> 
Real: 00:00:00.001, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0

val problem3 : int64 = 6857L


I think that the code with the temporary binding is significantly easier to read. It's pretty unusual to create an anonymous function and then immediately apply it to a value as you do in the other case. If you really want to avoid using a temporary value, I think that the most idiomatic way to do that in F# would be to use the (|>) operator to pipe the value into the anonymous function, but I still think that this isn't quite as readable.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜