MemoryCache does not obey memory limits in configuration
I’m working with the .NET 4.0 MemoryCache class in an application and trying to limit the maximum cache size, but in my tests it does not appear that the cache is actually obeying the limits.
I'm using the settings which, according to MSDN, are supposed to limit the cache size:
- CacheMemoryLimitMegabytes: The maximum memory size, in megabytes, that an instance of an object can grow to."
- PhysicalMemoryLimitPercentage: "The percentage of physical memory that the cache can use, expressed as an integer value from 1 to 100. The default is zero, which indicates that MemoryCache instances manage their own memory1 based on the amount of memory that is installed on the computer." 1. This is not entirely correct-- any value below 4 is ignored and replaced with 4.
I understand that these values are approximate and not hard limits as the thread that purges the cache is fired every x seconds and is also dependent on the polling interval and other undocumented variables. However even taking into account these variances, I'm seeing wildly inconsistent cache sizes when the first item is being evicted from the cache after setting CacheMemoryLimitMegabytes and PhysicalMemoryLimitPercentage together or singularly in a test app. To be sure I ran each test 10 times and calculated the average figure.
These are the results of testing the example code below on a 32-bit Windows 7 PC with 3GB of RAM. Size of the cache is taken after the first call to CacheItemRemoved() on each test. (I am aware the actual size of cache will be larger than this)
MemLimitMB MemLimitPct AVG Cache MB on first expiry
1 NA 84
2 NA 84
3 NA 84
6 NA 84
NA 1 84
NA 4 84
NA 10 84
10 20 81
10 30 81
10 39 82
10 40 79
10 49 146
10 50 152
10 60 212
10 70 332
10 80 429
10 100开发者_如何学JAVA 535
100 39 81
500 39 79
900 39 83
1900 39 84
900 41 81
900 46 84
900 49 1.8 GB approx. in task manager no mem errros
200 49 156
100 49 153
2000 60 214
5 60 78
6 60 76
7 100 82
10 100 541
Here is the test application:
using System;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Linq;
using System.Runtime.Caching;
using System.Text;
namespace FinalCacheTest
{
internal class Cache
{
private Object Statlock = new object();
private int ItemCount;
private long size;
private MemoryCache MemCache;
private CacheItemPolicy CIPOL = new CacheItemPolicy();
public Cache(long CacheSize)
{
CIPOL.RemovedCallback = new CacheEntryRemovedCallback(CacheItemRemoved);
NameValueCollection CacheSettings = new NameValueCollection(3);
CacheSettings.Add("CacheMemoryLimitMegabytes", Convert.ToString(CacheSize));
CacheSettings.Add("physicalMemoryLimitPercentage", Convert.ToString(49)); //set % here
CacheSettings.Add("pollingInterval", Convert.ToString("00:00:10"));
MemCache = new MemoryCache("TestCache", CacheSettings);
}
public void AddItem(string Name, string Value)
{
CacheItem CI = new CacheItem(Name, Value);
MemCache.Add(CI, CIPOL);
lock (Statlock)
{
ItemCount++;
size = size + (Name.Length + Value.Length * 2);
}
}
public void CacheItemRemoved(CacheEntryRemovedArguments Args)
{
Console.WriteLine("Cache contains {0} items. Size is {1} bytes", ItemCount, size);
lock (Statlock)
{
ItemCount--;
size = size - 108;
}
Console.ReadKey();
}
}
}
namespace FinalCacheTest
{
internal class Program
{
private static void Main(string[] args)
{
int MaxAdds = 5000000;
Cache MyCache = new Cache(1); // set CacheMemoryLimitMegabytes
for (int i = 0; i < MaxAdds; i++)
{
MyCache.AddItem(Guid.NewGuid().ToString(), Guid.NewGuid().ToString());
}
Console.WriteLine("Finished Adding Items to Cache");
}
}
}
Why is MemoryCache not obeying the configured memory limits?
Wow, so I just spent entirely too much time digging around in the CLR with reflector, but I think I finally have a good handle on what's going on here.
The settings are being read in correctly, but there seems to be a deep-seated problem in the CLR itself that looks like it will render the memory limit setting essentially useless.
The following code is reflected out of the System.Runtime.Caching DLL, for the CacheMemoryMonitor class (there is a similar class that monitors physical memory and deals with the other setting, but this is the more important one):
protected override int GetCurrentPressure()
{
int num = GC.CollectionCount(2);
SRef ref2 = this._sizedRef;
if ((num != this._gen2Count) && (ref2 != null))
{
this._gen2Count = num;
this._idx ^= 1;
this._cacheSizeSampleTimes[this._idx] = DateTime.UtcNow;
this._cacheSizeSamples[this._idx] = ref2.ApproximateSize;
IMemoryCacheManager manager = s_memoryCacheManager;
if (manager != null)
{
manager.UpdateCacheSize(this._cacheSizeSamples[this._idx], this._memoryCache);
}
}
if (this._memoryLimit <= 0L)
{
return 0;
}
long num2 = this._cacheSizeSamples[this._idx];
if (num2 > this._memoryLimit)
{
num2 = this._memoryLimit;
}
return (int) ((num2 * 100L) / this._memoryLimit);
}
The first thing you might notice is that it doesn't even try to look at the size of the cache until after a Gen2 garbage collection, instead just falling back on the existing stored size value in cacheSizeSamples. So you won't ever be able to hit the target right on, but if the rest worked we would at least get a size measurement before we got in real trouble.
So assuming a Gen2 GC has occurred, we run into problem 2, which is that ref2.ApproximateSize does a horrible job of actually approximating the size of the cache. Slogging through CLR junk I found that this is a System.SizedReference, and this is what it's doing to get the value (IntPtr is a handle to the MemoryCache object itself):
[SecurityCritical]
[MethodImpl(MethodImplOptions.InternalCall)]
private static extern long GetApproximateSizeOfSizedRef(IntPtr h);
I'm assuming that extern declaration means that it goes diving into unmanaged windows land at this point, and I have no idea how to start finding out what it does there. From what I've observed though it does a horrible job of trying to approximate the size of the overall thing.
The third noticeable thing there is the call to manager.UpdateCacheSize which sounds like it should do something. Unfortunately in any normal sample of how this should work s_memoryCacheManager will always be null. The field is set from the public static member ObjectCache.Host. This is exposed for the user to mess with if he so chooses, and I was actually able to make this thing sort of work like it's supposed to by slopping together my own IMemoryCacheManager implementation, setting it to ObjectCache.Host, and then running the sample. At that point though, it seems like you might as well just make your own cache implementation and not even bother with all this stuff, especially since I have no idea if setting your own class to ObjectCache.Host (static, so it affects every one of these that might be out there in process) to measure the cache could mess up other things.
I have to believe that at least part of this (if not a couple parts) is just a straight up bug. It'd be nice to hear from someone at MS what the deal was with this thing.
TLDR version of this giant answer: Assume that CacheMemoryLimitMegabytes is completely busted at this point in time. You can set it to 10 MB, and then proceed to fill up the cache to ~2GB and blow an out of memory exception with no tripping of item removal.
I know this answer is crazy late, but better late than never. I wanted to let you know that I wrote a version of MemoryCache
that resolves the Gen 2 Collection issues automatically for you. It therefore trims whenever the polling interval indicates memory pressure. If you're experiencing this issue, give it a go!
http://www.nuget.org/packages/SharpMemoryCache
You can also find it on GitHub if you're curious about how I solved it. The code is somewhat simple.
https://github.com/haneytron/sharpmemorycache
I've encountered this issue as well. I'm caching objects that are being fired into my process dozens of times per second.
I have found the following configuration and usage frees the items every 5 seconds most of the time.
App.config:
Take note of cacheMemoryLimitMegabytes. When this was set to zero, the purging routine would not fire in a reasonable time.
<system.runtime.caching>
<memoryCache>
<namedCaches>
<add name="Default" cacheMemoryLimitMegabytes="20" physicalMemoryLimitPercentage="0" pollingInterval="00:00:05" />
</namedCaches>
</memoryCache>
</system.runtime.caching>
Adding to cache:
MemoryCache.Default.Add(someKeyValue, objectToCache, new CacheItemPolicy { AbsoluteExpiration = DateTime.Now.AddSeconds(5), RemovedCallback = cacheItemRemoved });
Confirming the cache removal is working:
void cacheItemRemoved(CacheEntryRemovedArguments arguments)
{
System.Diagnostics.Debug.WriteLine("Item removed from cache: {0} at {1}", arguments.CacheItem.Key, DateTime.Now.ToString());
}
I have done some testing with the example of @Canacourse and the modification of @woany and I think there are some critical calls that block the cleaning of the memory cache.
public void CacheItemRemoved(CacheEntryRemovedArguments Args)
{
// this WriteLine() will block the thread of
// the MemoryCache long enough to slow it down,
// and it will never catch up the amount of memory
// beyond the limit
Console.WriteLine("...");
// ...
// this ReadKey() will block the thread of
// the MemoryCache completely, till you press any key
Console.ReadKey();
}
But why does the modification of @woany seems to keep the memory at the same level? Firstly, the RemovedCallback is not set and there is no console output or waiting for input that could block the thread of the memory cache.
Secondly...
public void AddItem(string Name, string Value)
{
// ...
// this WriteLine will block the main thread long enough,
// so that the thread of the MemoryCache can do its work more frequently
Console.WriteLine("...");
}
A Thread.Sleep(1) every ~1000th AddItem() would have the same effect.
Well, it's not a very deep investigation of the problem, but it looks as if the thread of the MemoryCache does not get enough CPU time for cleaning, while many new elements are added.
I (thankfully) stumbled across this useful post yesterday when first attempting to use the MemoryCache. I thought it would be a simple case of setting values and using the classes but I encountered similar issues outlined above. To try and see what was going on I extracted the source using ILSpy and then set up a test and stepped through the code. My test code was very similar to the code above so I won't post it. From my tests I noticed that the measurement of the cache size was never particularly accurate (as mentioned above) and given the current implementation would never work reliably. However the physical measurement was fine and if the physical memory was measured at every poll then it seemed to me like the code would work reliably. So, I removed the gen 2 garbage collection check within MemoryCacheStatistics; under normal conditions no memory measurements will be taken unless there has been another gen 2 garbage collection since the last measurement.
In a test scenario this obviously makes a big difference as the cache is being hit constantly so objects never have the chance to get to gen 2. I think we are going to use the modified build of this dll on our project and use the official MS build when .net 4.5 comes out (which according to the connect article mentioned above should have the fix in it). Logically I can see why the gen 2 check has been put in place but in practise I'm not sure if it makes much sense. If the memory reaches 90% (or whatever limit it has been set to) then it should not matter if a gen 2 collection has occured or not, items should be evicted regardless.
I left my test code running for about 15 minutes with a the physicalMemoryLimitPercentage set to 65%. I saw the memory usage remain between 65-68% during the test and saw things getting evicted properly. In my test I set the pollingInterval to 5 seconds, physicalMemoryLimitPercentage to 65 and physicalMemoryLimitPercentage to 0 to default this.
Following the above advice; an implementation of IMemoryCacheManager could be made to evict things from the cache. It would however suffer from the gen 2 check issue mentioned. Although, depending on the scenario, this may not be a problem in production code and may work sufficiently for people.
It turned out it is not a bug , all what you need to do is setting the pooling time span to enforce the limits , it seem if you leave the pooling not set, it will never trigger.I just tested it and no need to wrappers or any extra code :
private static readonly NameValueCollection Collection = new NameValueCollection
{
{"CacheMemoryLimitMegabytes", "20"},
{"PollingInterval", TimeSpan.FromMilliseconds(60000).ToString()}, // this will check the limits each 60 seconds
};
Set the value of "PollingInterval
" based on how fast the cache is growing , if it grow too fast increase the frequency of polling checks otherwise keep the checks not very frequent to not cause overhead.
If you use the following modified class and monitor the memory via Task Manager does in fact get trimmed:
internal class Cache
{
private Object Statlock = new object();
private int ItemCount;
private long size;
private MemoryCache MemCache;
private CacheItemPolicy CIPOL = new CacheItemPolicy();
public Cache(double CacheSize)
{
NameValueCollection CacheSettings = new NameValueCollection(3);
CacheSettings.Add("cacheMemoryLimitMegabytes", Convert.ToString(CacheSize));
CacheSettings.Add("pollingInterval", Convert.ToString("00:00:01"));
MemCache = new MemoryCache("TestCache", CacheSettings);
}
public void AddItem(string Name, string Value)
{
CacheItem CI = new CacheItem(Name, Value);
MemCache.Add(CI, CIPOL);
Console.WriteLine(MemCache.GetCount());
}
}
精彩评论