Understanding the posix interprocess semaphore
According to m开发者_如何学JAVAy understanding, a semaphore should be usable across related processes without it being placed in shared memory. If so, why does the following code deadlock?
#include <iostream>
#include <semaphore.h>
#include <sys/wait.h>
using namespace std;
static int MAX = 100;
int main(int argc, char* argv[]) {
int retval;
sem_t mutex;
cout << sem_init(&mutex, 1, 0) << endl;
pid_t pid = fork();
if (0 == pid) {
// sem_wait(&mutex);
cout << endl;
for (int i = 0; i < MAX; i++) {
cout << i << ",";
}
cout << endl;
sem_post(&mutex);
} else if(pid > 0) {
sem_wait(&mutex);
cout << endl;
for (int i = 0; i < MAX; i++) {
cout << i << ",";
}
cout << endl;
// sem_post(&mutex);
wait(&retval);
} else {
cerr << "fork error" << endl;
return 1;
}
// sem_destroy(&mutex);
return 0;
}
When I run this on Gentoo/Ubuntu Linux, the parent hangs. Apparently, it did not receive the post by child. Uncommenting sem_destroy won't do any good. Am I missing something?
Update 1: This code works
mutex = (sem_t *) mmap(NULL, sizeof(sem_t), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, 0, 0);
if (!mutex) {
perror("out of memory\n");
exit(1);
}
Thanks, Nilesh.
The wording in the manual page is kind of ambiguous.
If pshared is nonzero, then the semaphore is shared between processes, and should be located in a region of shared memory.
Since a child created by fork(2) inherits its parent's memory mappings, it can also access the semaphore.
Yes, but it still has to be in a shared region. Otherwise the memory simply gets copied with the usual CoW and that's that.
You can solve this in at least two ways:
- Use
sem_open("my_sem", ...)
- Use
shm_open
andmmap
to create a shared region
An excellent article on this topic, for future passers-by:
http://blog.superpat.com/2010/07/14/semaphores-on-linux-sem_init-vs-sem_open/
精彩评论