Roberts Operator just makes the image brighter
I posted another question about the Roberts operator, but I decided to post a new one since my code has changed significantly since that time.
My code runs, but it does not generate the correct image, instead the image becomes slightly brighter.
I have not found a mistake in the algorithm, but I know this is not the correct output. If I compare this program's output to edge(<image matrix>,'roberts',<threshold>);
, or to images on wikipedia, it looks nothing like the effect of the roberts operator shown there.
code:
function [] = Robertize(filename)
Img = imread(filename);
NewImg = Img;
SI = size(Img);
I_W = SI(2)
I_H = SI(1)
Robertsx = [1,0;0,-1];
Robertsy = [0,-1;1,0];
M_W = 2; % do not need the + 1, I assume the for loop means while <less than or equal to>
% x and y are reversed...
for y=1 : I_H
for x=1 : I_W
S = 0;
for M_Y = 1 : M_W
for M_X = 1 : M_W
if (x + M_X - 1 < 1) || (x + M_X - 1 > I_W)
S = 0;
%disp('out of range, x');
continue
end
if (y + M_Y - 1 < 1) || (y + M_Y - 1 > I_H)
S = 0;
%disp('out of range, y');
continue
end
S = S + Img(y + M_Y - 1 , x + M_X - 1) * Robertsx(M_Y,M_X);
S = S + Img(y + M_Y - 1, x + M_X - 1) * Robertsy(M_Y,M_X);
% It is y + M_Y - 1 because you multiply Rober开发者_C百科tsx(1,1) *
% Img(y,x).
end
end
NewImg(y,x) = S;
end
end
imwrite(NewImg,'Roberts.bmp');
end
I think you may be misinterpreting how the Roberts Cross operator works. Use this page as a guide. Notice that it states that you convolve the original image separately with the X and Y operator. Then, you may calculate the final gradient (i.e. "total edge content") value by taking the square root of the sum of squares of the two (x and y) gradient values for a particular pixel. You're presently summing the x and y values into a single image, which will not give the correct results.
EDIT
I'll try to explain a bit better. The problem with summation instead of squaring/square root is that you can end up with negative values. Negative values are natural using this operator depending on the edge orientation. That may be why you think the image 'lightens' -- because when you display the image in MATLAB the negative values go to black, the zero values go to grey, and the positive values go to white. Here's the image I get when I run your code (with a few changes -- mostly setting NewImg
to be zeros(size(Img))
so it's a double
type instead of uint8
. uint8
types don't allow negative values... Here's the image I get:
You have to be very careful when trying to save files as well. Instead of calling imwrite
, call imshow(NewImg,[])
. That will automatically rescale the values in the double
-valued image to show them correctly, with the most negative number being equal to black and most positive equal to white. Thus, in areas with little edge content (like the sky), we would expect grey and that's what we get!
I ran your code and got the effect you described. See how everything looks lighter:
Figure 1 - Original on the left, original roberts transformation on the rightThe image on my system was actually saturated. My image was uint8 and the operations were pushing the image past 255 or under 0 (for the negative side) and everything became lighter.
By changing the line of code in the imread to convert to double as in
Img = double(rgb2gray( imread(filename)));
(note my image was color so I did an rgb conversion, too. You might use
Img = double(( imread(filename)));
I got the improved image:
Original on left, corrected code on right.Note that I could also produce this result using 2d convolution rather than your loop:
Robertsx = [1,0;0,-1];
Robertsy = [0,-1;1,0];
dataR = conv2(data, Robertsx) + conv2(data, Robertsy);
figure(2);
imagesc(dataR);
colormap gray
axis image
For the following result:
Here is an example implementation. You could easily replace CONV2/IMFILTER with your own 2D convolution/correlation function:
%# convolve image with Roberts kernels
I = im2double(imread('lena512_gray.jpg')); %# double image, range [0,1]
hx = [+1 0;0 -1]; hy = [0 +1;-1 0];
%#Gx = conv2(I,hx);
%#Gy = conv2(I,hy);
Gx = imfilter(I,hx,'conv','same','replicate');
Gy = imfilter(I,hy,'conv','same','replicate');
%# gradient approximation
G = sqrt(Gx.^2+Gy.^2);
figure, imshow(G), colormap(gray), title('Gradient magnitude [0,1]')
%# direction of the gradient
Gdir = atan2(Gy,Gx);
figure, imshow(Gdir,[]), title('Gradient direction [-\pi,\pi]')
colormap(hot), colorbar%, caxis([-pi pi])
%# quiver plot
ySteps = 1:8:size(I,1);
xSteps = 1:8:size(I,2);
[X,Y] = meshgrid(xSteps,ySteps);
figure, imshow(G,[]), hold on
quiver(X, Y, Gx(ySteps,xSteps), Gy(ySteps,xSteps), 3)
axis image, hold off
%# binarize gradient, and compare against MATLAB EDGE function
BW = im2bw(G.^2, 6*mean(G(:).^2));
figure
subplot(121), imshow(BW)
subplot(122), imshow(edge(I,'roberts')) %# performs additional thinning step
精彩评论