Why Play! framework chose Groovy for template engine
From their website http://www.playframework.org/documentation/1.0/faq
" The biggest CPU consumer in the Play stack at this time is the template engine based on Groovy. But as Play applications are easily scalable, it is not really a problem if you need to serve a very high traffic: you can balance the load 开发者_如何学运维between several servers. And we hope for a performance gain at this level with the new JDK7 and its better support of dynamic languages. "
So there are no better choices? What about JSP?
JSP is not feasible as every JSP compiles to a Servlet and the servlet API provides things like the server side session which are not compatible with the RESTful paradigm. We don't want to go back to the dark ages of badly scalable server side sessions, back buttoning problems in the browser, reposts etc.
Japid templates are interesting, but they are not backed by a great community and perhaps didn't even exist at the time play was created (I don't know for sure though). I tried Japid as a replacement for the Groovy templates in my own application and found out in a JMeter test that the benefit would be only marginal, 10% to max. 25% improvement.
I guess in the end it all depends on your scalability requirements and the structure of your pages. I picked the 90% use case of my application and did the test. To me, the little improvement did not justify for the additional costs of the extra dependency (I like to keep dependencies to a minimum for maintainability).
Groovy templates are not bad or slow in general. Use typed variables wherever possible (instead of "def"), even in closures! Keep values of accessed properties in local variables. Do reasonable results paging. Then keep your fingers crossed that GSP might be able to run on groovy++ in the future and you're done ;)
To me, the question would not be why they used groovy in the views. That is, because I rather do miss it so much in the controller layer. Groovy would make coding the controller behaviour a lot easier IMHO.
First off, JSP was not a valid option for Play since it chose not to go down the Java EE route (which JSP is part of). Instead, Play chose to use Groovy as an intuitive, simple but powerful templating engine.
However, one of Play's greatest features is that it is a pluggable system, meaning that many parts of the core system can simply be replaced. This includes the template engine, and there are a couple that are already available.
The most popular is Japid. It claims to be 2-20x faster than the standard templating engine, and has been around for a while. For more info, see here http://www.playframework.org/modules/japid.
A second option is Cambridge, although this has only been out for a little while, but is reasonably active in the message boards (see https://groups.google.com/forum/?hl=en#!searchin/play-framework/cambridge/play-framework/IxSei-9BGq8/X-3pF5tWAKAJ).
I tend to stick to Groovy, as I like the way it works, and have not found it to be too bad in terms of performance, but every application is individual, so your own performance tests should lead you down your own particular path.
Yes there is Japid. Which is much, much faster.
http://www.playframework.org/modules/japid
I totally agree with the choice of ease over speed the Play Framework designers made here. My guess is that if the templating starts getting in the way in terms of performance, you can (and should!) measure the slow bits, and refactor them into fast tags where possible. With that, you're likely to save 80% of CPU by moving 20% into fast tags, leaving you with flexibility and adequate speed.
Having said that, I'm looking forward to an experiment I'm planning to see how well the new Scala templates (loosely "borrowed" from Razor.NET - awesome clean syntax) work with Java controllers/models. The Scala backend isn't there yet in terms of comparative ease, but the templating language certainly rocks.
I may be late to the party in 2016. Play 2 is out, and the JDK (not to mention the hardware) drastically improved. I am not using Play or Spring Boot, since my platform doesn't need them - just pure runtime text/HTML generation from templates.
First, when talking about Groovy templates, there is more than one. I use the original Groovy SimpleTemplateEngine for anything from emails to rich Web pages, whether most people nowadays favor the "advanced" MarkupTemplateEngine with its non-HTML builder syntax. I did not go that route because of the IDE (e.g. UntelliJ) support for JSPish HTML files with JavaScript - catching unclosed tags, braces, etc. Besides, how would you include JavaScript into the curly brace based "builder" style template?
Whichever you chose, both SimpleTemplateEngine and MarkupTemplateEngine statically compile their templates, even though the Groovy doc only mentions it for the latter. Why wouldn't it generates a class for the former? I didn't compare them against each other, but I'd expect SimpleTemplateEngine to be faster, since it is... well, simpler - doesn't translate any syntax into String concatenations with ifs and loops in between.
And it is indeed very fast. I was concerned about invoking it in a loop. Doesn't make any difference. There is no overhead, as the template is compiled once.
I use multiple small templates responsible for generating individual form control markup (HTML + JS) to generate a composite form, included in a higher-level container, included in another container, and so on, until the entire page is formed. Decomposing your view like that makes it, as you already guessed, modular, encapsulated, and "object-oriented" - composed of many individual MVC components building upon each other. Sort of like good old custom JSP tags, only evaluated at runtime and compatible with technologies like Spring Boot, if you cannot resist trendy resume-boosting stuff like that.
A test form with a 100 fields (all complex "smart" controls with encapsulated state management and behavior) renders in 150ms the first time, and then 10-14ms thereafter. In an IDE debugger on my memory-starved 4y.o. notebook. I also verified it is thread-safe, since Groovy never mentioned it explicitly. Why wouldn't it be, if it is compiled into a stateless Groovy class like any other? Call createTemplate() once, store the Template somewhere, and use it (call Template.make()) in your servlet or another concurrent context. Obviously I'll never have a 100-field form in a real application. Anyone who does, needs to reconsider his/her UX.
The performance is quite adequate. I'd even accept one second to render a 100-field page. Think of it, you don't need ultimate nanotrading or nuclear missile tracking performance in a Web app. If you do, pick Jamon: http://www.jamon.org/Overview.html, which generates a Java class, you'd normally write to concatenate Strings. I didn't test it, as I don't like extra compilation steps (automatically executed by Maven, but still). Compiled Groovy bytecode is good enough for me - compared to the compiled, yes, strongly-typed Java. The difference would be marginal unless you are doing something complex, which you shouldn't inside a template (see below). Playing with typed Groovy variables vs. def as suggested in this thread, only saved me a couple of milliseconds on that 100-template run.
Templates should not have much procedural logic (internal variables, ifs and loops) anyway - that's the controller's, not view's responsibility. That said, ifs and loops are a must for a template engine. Why would one use Handlebars/Mustache, if he/she can simply call String.replace()?
The rest of the template engines is also irrelevant. No String concatenation (e.g. Velocity, or Freemarker) or interpreted JS-based technology (e.g. Jade) would ever beat the most direct Jamon's approach performance-wise. And being a Java programmer, you want to use your favorite language/syntax: either directly (Jamon) or 90% close to Java, Groovy is (being a scripting-centric concise interpreted Java). I wouldn't comment on Scala - the matter of preference. Other than its allegedly "concise" syntax (less and less relevant with Java 8+) comes at a price. And only matters for complex loops. You do not want to write your entire app inside one template, like I already said. A couple of loops and up to ten if statements max.
And, like everyone mentioned, the intuitive syntax, and ease of use is the key. They drastically reduce the number of bugs. A good (additional) server costs a $1000, while developer salaries - to fix all of the bugs stemming form the complexity of marginal performance optimization, are 100 times higher.
精彩评论