What does cltq do in assembly?
0x0000000000400553 <main+59>: mov -0x4(%rbp),%eax
0x0000000000400556 <main+62>: cltq
0x0000000000400558 <main+64>: shl $0x3,%rax
0x000000000040055c <main+68>: mov %rax,%rdx
In fact my programe is as simple as :
5 int main(int argc, char *argv[]) {
6 int i = 0;
7 while(environ[i]) {
8 printf("%s\n", environ[i++]);
9 }
10 return 0;
But the assembly output is pretty long:
Dump of assembler code for function main:
0x0000000000400518 <main+0>: push %rbp
0x0000000000400519 <main+1>: mov %rsp,%rbp
0x000000000040051c <main+4>: sub $0x20,%rsp
0x0000000000400520 <main+8>: mov %edi,-0x14(%rbp)
0x0000000000400523 <main+11>: mov %rsi,-0x20(%rbp)
0x0000000000400527 <main+15>: movl $0x0,-0x4(%rbp)
0x000000000040052e <main+22>: jmp 0x400553 <main+59>
0x0000000000400530 <main+24>: mov -0x4(%rbp),%eax
0x0000000000400533 <main+27>: cltq
0x0000000000400535 <main+29>: shl $0x3,%rax
0x0000000000400539 <main+33>: mov %rax,%rdx
0x000000000040053c <main+36>: mov 0x2003e5(%rip),%rax # 0x600928 <environ@@GLIBC_2.2.5>
0x0000000000400543 <main+43>: lea (%rdx,%rax,1),%rax
0x0000000000400547 <main+47>: mov (%rax),%rdi
0x0000000000400开发者_如何学运维54a <main+50>: addl $0x1,-0x4(%rbp)
0x000000000040054e <main+54>: callq 0x400418 <puts@plt>
0x0000000000400553 <main+59>: mov -0x4(%rbp),%eax
0x0000000000400556 <main+62>: cltq
0x0000000000400558 <main+64>: shl $0x3,%rax
0x000000000040055c <main+68>: mov %rax,%rdx
0x000000000040055f <main+71>: mov 0x2003c2(%rip),%rax # 0x600928 <environ@@GLIBC_2.2.5>
0x0000000000400566 <main+78>: lea (%rdx,%rax,1),%rax
0x000000000040056a <main+82>: mov (%rax),%rax
0x000000000040056d <main+85>: test %rax,%rax
0x0000000000400570 <main+88>: jne 0x400530 <main+24>
0x0000000000400572 <main+90>: mov $0x0,%eax
0x0000000000400577 <main+95>: leaveq
0x0000000000400578 <main+96>: retq
End of assembler dump.
What I don't understand is this block:
0x000000000040052e <main+22>: jmp 0x400553 <main+59>
0x0000000000400530 <main+24>: mov -0x4(%rbp),%eax
0x0000000000400533 <main+27>: cltq
0x0000000000400535 <main+29>: shl $0x3,%rax
0x0000000000400539 <main+33>: mov %rax,%rdx
0x000000000040053c <main+36>: mov 0x2003e5(%rip),%rax # 0x600928 <environ@@GLIBC_2.2.5>
0x0000000000400543 <main+43>: lea (%rdx,%rax,1),%rax
0x0000000000400547 <main+47>: mov (%rax),%rdi
0x000000000040054a <main+50>: addl $0x1,-0x4(%rbp)
0x000000000040054e <main+54>: callq 0x400418 <puts@plt>
0x0000000000400553 <main+59>: mov -0x4(%rbp),%eax
0x0000000000400556 <main+62>: cltq
0x0000000000400558 <main+64>: shl $0x3,%rax
0x000000000040055c <main+68>: mov %rax,%rdx
0x000000000040055f <main+71>: mov 0x2003c2(%rip),%rax # 0x600928 <environ@@GLIBC_2.2.5>
0x0000000000400566 <main+78>: lea (%rdx,%rax,1),%rax
0x000000000040056a <main+82>: mov (%rax),%rax
0x000000000040056d <main+85>: test %rax,%rax
0x0000000000400570 <main+88>: jne 0x400530 <main+24>
Mnemonic
cltq
is the gas
mnemonic for Intel's cdqe
as documented at: https://sourceware.org/binutils/docs/as/i386_002dMnemonics.html
The mnemonics are:
- Convert Long To Quad (
cltq
): AT&T-style - Convert Double to Quad Extend (
cdqe
): Intel
Terminology:
- quad (aka quad-word) == 8 bytes
- long (AT&T) == double-word (Intel) == 4 bytes
This is one of the few instructions whose GAS name is very different from the Intel version. as
accepts either mnemonic, but Intel-syntax assemblers like NASM may only accept the Intel names.
Effect
It sign extends 4 bytes into 8 bytes, which in 2's complement means that for:
- negative numbers, the bits of the upper 4 bytes must set to 1
- positive numbers, they must be set to 0
In C, that usually represents a cast from signed int
to long
.
Example:
mov $0x0123456700000001, %rax # eax=1, high bytes of rax=garbage
cltq
# %rax == $0000 0000 0000 0001
mov $-1, %eax # %rax = 0000 0000 FFFF FFFF
cltq
# %rax == $FFFF FFFF FFFF FFFF == qword $-1
This instruction is only available on 64-bits.
Also consider the following instructions:
CWDE
(AT&TCWTL
),CBW
(AT&TCBTW
): smaller versions ofCDQE
, also present in 32-bitCQO
family, which sign extendsRAX
intoRDX:RAX
MOVSX
family, which both sign extends and moves: what does movsbl instruction do?
Minimal runnable examples on GitHub with assertions:
CWDE
andCWTL
CDQE
andCLTQ
C example
GCC 4.9.3 emits it:
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) {
int i = strtol(argv[1], (char **)NULL, 16);;
long int l = i;
printf("%lx\n", l);
}
Compile and disassemble:
gcc -ggdb3 -std=c99 -O0 a.c
objdump -S a.out
contains:
int main(int argc, char **argv) {
...
long int l2 = i;
400545: 8b 45 fc mov -0x4(%rbp),%eax
400548: 48 98 cltq
40054a: 48 89 45 f0 mov %rax,-0x10(%rbp)
and the behavior is:
$ ./a.out 0x80000000
ffffffff80000000
$ ./a.out 0x40000000
40000000
cltq promotes an int to an int64. shl 3, %rax makes an offset to a 64-bit pointer (multiplies whatever is in rax by 8). what the code is doing is looping through a list of pointers to environment variables. when it finds a value of zero, that's the end, and it drops out of the loop.
Here is a visual on how Linux stores the environment variables in RAM, above the stack. You'll see the pointers starting at 0xbffff75c; that points to 0xbffff893, "TERM=rxvt".
jcomeau@intrepid:/tmp$ gdb test
GNU gdb (GDB) 7.2-debian
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "i486-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /tmp/test...(no debugging symbols found)...done.
(gdb) break main
Breakpoint 1 at 0x80483e7
(gdb) run
Starting program: /tmp/test
Breakpoint 1, 0x080483e7 in main ()
(gdb) info reg
eax 0xbffff754 -1073744044
ecx 0xe88ed1c 243854620
edx 0x1 1
ebx 0xb7fc5ff4 -1208197132
esp 0xbffff6a8 0xbffff6a8
ebp 0xbffff6a8 0xbffff6a8
esi 0x0 0
edi 0x0 0
eip 0x80483e7 0x80483e7 <main+3>
eflags 0x200246 [ PF ZF IF ID ]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51
(gdb) x/160x 0xbffff6a8
0xbffff6a8: 0xbffff728 0xb7e86e46 0x00000001 0xbffff754
0xbffff6b8: 0xbffff75c 0xb7fe2940 0xb7ff7351 0xffffffff
0xbffff6c8: 0xb7ffeff4 0x08048254 0x00000001 0xbffff710
0xbffff6d8: 0xb7ff0976 0xb7fffac0 0xb7fe2c38 0xb7fc5ff4
0xbffff6e8: 0x00000000 0x00000000 0xbffff728 0x21b99b0c
0xbffff6f8: 0x0e88ed1c 0x00000000 0x00000000 0x00000000
0xbffff708: 0x00000001 0x08048330 0x00000000 0xb7ff64f0
0xbffff718: 0xb7e86d6b 0xb7ffeff4 0x00000001 0x08048330
0xbffff728: 0x00000000 0x08048351 0x080483e4 0x00000001
0xbffff738: 0xbffff754 0x08048440 0x08048430 0xb7ff12f0
0xbffff748: 0xbffff74c 0xb7fff908 0x00000001 0xbffff889
0xbffff758: 0x00000000 0xbffff893 0xbffff89d 0xbffff8ad
0xbffff768: 0xbffff8fd 0xbffff90c 0xbffff91c 0xbffff92d
0xbffff778: 0xbffff93a 0xbffff94d 0xbffff97a 0xbffffe6a
0xbffff788: 0xbffffe75 0xbffffef7 0xbfffff0e 0xbfffff1d
0xbffff798: 0xbfffff26 0xbfffff30 0xbfffff41 0xbfffff6a
0xbffff7a8: 0xbfffff73 0xbfffff8a 0xbfffff9d 0xbfffffa5
0xbffff7b8: 0xbfffffbc 0xbfffffcc 0xbfffffdf 0x00000000
0xbffff7c8: 0x00000020 0xffffe420 0x00000021 0xffffe000
0xbffff7d8: 0x00000010 0x078bfbff 0x00000006 0x00001000
0xbffff7e8: 0x00000011 0x00000064 0x00000003 0x08048034
0xbffff7f8: 0x00000004 0x00000020 0x00000005 0x00000008
0xbffff808: 0x00000007 0xb7fe3000 0x00000008 0x00000000
---Type <return> to continue, or q <return> to quit---
0xbffff818: 0x00000009 0x08048330 0x0000000b 0x000003e8
0xbffff828: 0x0000000c 0x000003e8 0x0000000d 0x000003e8
0xbffff838: 0x0000000e 0x000003e8 0x00000017 0x00000000
0xbffff848: 0x00000019 0xbffff86b 0x0000001f 0xbffffff2
0xbffff858: 0x0000000f 0xbffff87b 0x00000000 0x00000000
0xbffff868: 0x50000000 0x7d410985 0x1539ef2a 0x7a3f5e9a
0xbffff878: 0x6964fe17 0x00363836 0x00000000 0x00000000
0xbffff888: 0x6d742f00 0x65742f70 0x54007473 0x3d4d5245
0xbffff898: 0x74767872 0x45485300 0x2f3d4c4c 0x2f6e6962
0xbffff8a8: 0x68736162 0x47445800 0x5345535f 0x4e4f4953
0xbffff8b8: 0x4f4f435f 0x3d45494b 0x37303534 0x66656135
0xbffff8c8: 0x32353131 0x63346334 0x30393436 0x35386331
0xbffff8d8: 0x39346134 0x37316135 0x3033312d 0x31383339
0xbffff8e8: 0x2e303736 0x31303832 0x382d3033 0x33323731
0xbffff8f8: 0x39373936 0x53494800 0x5a495354 0x30313d45
0xbffff908: 0x00303030 0x48535548 0x49474f4c 0x41463d4e
0xbffff918: 0x0045534c 0x444e4957 0x4449574f 0x3833383d
(gdb) x/20s 0xbffff888
0xbffff888: ""
0xbffff889: "/tmp/test"
0xbffff893: "TERM=rxvt"
0xbffff89d: "SHELL=/bin/bash"
0xbffff8ad: "XDG_SESSION_COOKIE=45075aef11524c4c64901c854a495a17-1309381670.280130-817236979"
0xbffff8fd: "HISTSIZE=10000"
0xbffff90c: "HUSHLOGIN=FALSE"
0xbffff91c: "WINDOWID=8388614"
0xbffff92d: "USER=jcomeau"
0xbffff93a: "HISTFILESIZE=10000"
0xbffff94d: "LD_LIBRARY_PATH=/usr/src/jet/lib/x86/shared:"
0xbffff97a: "LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31"...
0xbffffa42: ":*.taz=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lz=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.d"...
0xbffffb0a: "eb=01;31:*.rpm=01;31:*.jar=01;31:*.rar=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35"...
0xbffffbd2: ":*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=---Type <return> to continue, or q <return> to quit---
01;35:*.m2v=01;35:*.mkv=01;35:*.ogm=01;35:*.mp4=01;35:*.m4"...
0xbffffc9a: "v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*."...
0xbffffd62: "yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=00;3"...
0xbffffe2a: "6:*.wav=00;36:*.axa=00;36:*.oga=00;36:*.spx=00;36:*.xspf=00;36:"
0xbffffe6a: "COLUMNS=80"
0xbffffe75: "PATH=/usr/src/jet/bin:/usr/local/bin:/usr/bin:/bin:/usr/games:/home/jcomeau:/home/jcomeau/bin:/home/jcomeau/src:/sbin:/usr/sbin:."
(gdb) quit
A debugging session is active.
Inferior 1 [process 10880] will be killed.
Quit anyway? (y or n) y
Your compiler is apparently smart enough to optimize the simply-formatted printf
to a puts
. the fetching of the environment string, and the postincrement of i, are right there in the code. If you don't figure some of this out on your own you'll never really understand it. Just "be" the computer, and step through the loop, using the data I dumped out for you with gdb, and it should all become clear to you.
cltq
is the AT&T mnemonic for CDQE, which sign-extends EAX into RAX. It's a short-form of movslq %eax, %rax
, saving code bytes. It exists because of how x86-64 evolved from 8086 to 386 to AMD64.
It copies the sign bit of EAX to all the upper bits of the wider register, because that's how 2's complement works. The mnemonic is short for Convert Long to Quad.
AT&T syntax (used by GNU as
/ objdump
) uses different mnemonics than Intel for some instructions (see the official docs). You can use objdump -drwC -Mintel
or gcc -masm=intel -S
to get Intel syntax using the mnemonics that Intel and AMD document in their instruction reference manuals (see links in the x86 tag wiki. (Fun fact: as input, gas accepts either mnemonic in either mode).
machine mnemonics: MOVSX equivalent
code AT&T Intel AT&T Intel
66 98 cbtw cbw movsbw %al,%ax movsx ax,al
98 cwtl cwde movswl %ax,%eax movsx eax,ax
48 98 cltq cdqe movslq %eax,%rax movsxd rax,eax
Intel insn ref manual entry for these 3 insns.
cltq
/cdqe
is obviously only available in 64-bit mode, but the other two are available in all modes. movsx
and movzx
were only introduced with 386, making it easy/efficient to sign/zero extend registers other than al
/ax
, or to sign/zero extend on the fly while loading.
Think of cltq
/cdqe
as a special-case shorter encoding of movslq %eax,%rax
. It runs just as fast. But the only benefit is saving a couple bytes of code, so it's not worth sacrificing anything else to use it instead of movsxd
/ movzx
.
A related group of instructions copies the sign-bit of [e/r]ax into all bits of [e/r]dx. Sign-extending eax
into edx:eax
is useful before idiv
, or simply before returning a wide integer in a pair of registers.
AT&T / Intel mnemonic effect
66 99 cwtd cwd word->doubleword dx = signbit(ax)
99 cltd cdq doubleword->quadword edx = signbit(eax)
48 99 cqto cqo quadword->octword rdx = signbit(rax)
These have no single-instruction equivalent, but you can do them in two instructions:
e.g. mov %eax, %edx
/ sar $31, %edx
Remembering the mnemonics
The Intel mnemonics for Extending within rax
all end with e
, except for the original 8086 cbw
. You can remember that case because even 8086 handled 16-bit integers in a single register, so there'd be no need to set dl
to the sign bit of al
. div r8
and idiv r8
read the dividend from ax
, not from dl:al
. So cbw
sign-extends al
into ax
.
The AT&T mnemonics don't have an obvious hint to help you remember which one is which. Some of the ones that write to *dx
end with d
(for dx?) instead of the usual l
for long
. cqto
breaks that pattern, but an octword is 128b and thus has to be the concatenation of rdx:rax
.
IMO the Intel mnemonics are easier to remember, and Intel-syntax is easier to read in general. (I learned AT&T syntax first, but got used to Intel because reading Intel/AMD manuals is useful!)
Note that for zero-extension, mov %edi,%edi
zero-extends %edi
into %rdi
, because any write to a 32-bit register zeros the upper 32 bits.
(In practice, try to mov
to a different register (e.g. mov %eax, %ecx
) because same,same
defeats mov-elimination in Intel CPUs. You will often see compiler-generated asm for functions with 32-bit unsigned args use a mov
to zero-extend, and unfortunately often with the same register as src and destination.)
For 8 or 16 out to 32 (and implicitly 64), and $0xff, %eax
works but is less efficient than movzbl %al, %eax
. $0xff
doesn't fit in an 8-bit sign-extended immediate so it needs a full 4-byte 0x000000ff
immediate. (Or better, movzbl %al, %ecx
so mov-elimination can make it zero latency on Intel CPUs where mov-elimination works for movzx
8->32.).
If your OS is 64bit, If you do not declare a function reside in another file, but you want to use it in this file. GCC will default to think this function to be 32bit. So cltq will only use low 32 bit of RAX(return value) , the high 32bit will be fill in 1 or 0. hope this web will help you http://www.mystone7.com/2012/05/23/cltq/
精彩评论