Given an R dataframe with column A, how do I create two new columns containing all ordered combinations of A
I have a data.frame with one id column (x below), and a number of variables (y1,y2 below).
x y1 y2
1 1 43 55
2 2 51 53
[...]
What I would like to generate from this is a dataframe where the first two columns cover every ordered combination of x (except where they are equal) along with c开发者_开发问答olumns for each variable related to the order. The data frame header and first two rows would look like this (did this by hand, excuse errors):
xi xj y1i y1j y2i y2j
1 2 43 51 55 53
2 1 51 43 53 55
[...]
So each row would container a source and destination (i and j) and then values for y1 at each source and destination.
I'm slowly learning R data manipulation, but this one is stumping me. Kudos for the one line does-it-all answer, as well as a more readable didactic answer.
This works (apart perhaps from order)
firstdf <- data.frame(x = c( 1, 2, 4, 5),
y1 = c(43,51,57,49), y2 = c(55,53,47,44))
co <- combn(firstdf$x,2)
seconddf <- data.frame(xi = c(co[1,], co[2,]), xj = c(co[2,], co[1,]))
thirddf <- merge(merge(seconddf, firstdf, by.x = "xj", by.y = "x" ),
firstdf, by.x = "xi", by.y = "x", suffixes = c("j", "i") )
to produce
> thirddf
xi xj y1j y2j y1i y2i
1 1 2 51 53 43 55
2 1 5 49 44 43 55
3 1 4 57 47 43 55
4 2 4 57 47 51 53
5 2 1 43 55 51 53
6 2 5 49 44 51 53
7 4 5 49 44 57 47
8 4 1 43 55 57 47
9 4 2 51 53 57 47
10 5 1 43 55 49 44
11 5 2 51 53 49 44
12 5 4 57 47 49 44
where the first and fifth rows match your example.
If you take firstdf
as given and insist on one line then you can turn this into
merge(merge(data.frame(xi = c(combn(firstdf$x,2)[1,], combn(firstdf$x,2)[2,]), xj = c(combn(firstdf$x,2)[2,], combn(firstdf$x,2)[1,])), firstdf, by.x = "xj", by.y = "x" ), firstdf, by.x = "xi", by.y = "x", suffixes = c("j", "i") )
but I don't really see the point
Two lines is the best I can do and still keep it sensible: (Edit: see bottom of answer for one-liner.)
Create some data:
n <- 4
a <- cbind(x=LETTERS[1:n], y=letters[1:n])
a
x y
[1,] "A" "a"
[2,] "B" "b"
[3,] "C" "c"
[4,] "D" "d"
The code:
f <- function(x, i){cbind(i, x[i[,1],], x[i[,2],])}
f(a, t(combn(seq_len(nrow(a)), 2)))
The results:
x y x y
[1,] "1" "2" "A" "a" "B" "b"
[2,] "1" "3" "A" "a" "C" "c"
[3,] "1" "4" "A" "a" "D" "d"
[4,] "2" "3" "B" "b" "C" "c"
[5,] "2" "4" "B" "b" "D" "d"
[6,] "3" "4" "C" "c" "D" "d"
EDIT
This can be turned into a one-liner by making use of anonymous functions:
(function(x, i=t(combn(seq_len(nrow(a)), 2))){cbind(i, x[i[,1],], x[i[,2],])})(a)
x y x y
[1,] "1" "2" "A" "a" "B" "b"
[2,] "1" "3" "A" "a" "C" "c"
[3,] "1" "4" "A" "a" "D" "d"
[4,] "2" "3" "B" "b" "C" "c"
[5,] "2" "4" "B" "b" "D" "d"
[6,] "3" "4" "C" "c" "D" "d"
I'm not sure what you exactly want in general, but as far as my understanding, this may be close to what you want:
> library(combinat) # for permn
> library(plyr) # for llply
>
> # sample data
> d <- data.frame(x = 1:3, y1 = rnorm(3), y2 = rnorm(3))
> d
x y1 y2
1 1 -0.17525893 -1.1660321
2 2 -0.05585689 -0.2059244
3 3 0.90500983 -1.3067601
>
> # permutation of rows
> idx <- permn(nrow(d))
> idx
[[1]]
[1] 1 2 3
... snip ...
[[6]]
[1] 2 1 3
>
> # a list of perm-ed data.frame
> d2 <- llply(idx, function(i)data.frame(idx = 1:nrow(d), d[i,]))
> d2
[[1]]
idx x y1 y2
1 1 1 -0.17525893 -1.1660321
2 2 2 -0.05585689 -0.2059244
3 3 3 0.90500983 -1.3067601
... snip ...
[[6]]
idx x y1 y2
2 1 2 -0.05585689 -0.2059244
1 2 1 -0.17525893 -1.1660321
3 3 3 0.90500983 -1.3067601
>
> # merge htam
> d3 <- subset(Reduce(function(df1, df2) merge(df1, df2, by="idx"), d2), select = -c(idx))
> d3
x.x y1.x y2.x x.y y1.y y2.y x.x.1 y1.x.1 y2.x.1 x.y.1 y1.y.1 y2.y.1 x.x.2 y1.x.2 y2.x.2 x.y.2
1 1 -0.17525893 -1.1660321 1 -0.17525893 -1.1660321 3 0.90500983 -1.3067601 3 0.90500983 -1.3067601 2 -0.05585689 -0.2059244 2
2 2 -0.05585689 -0.2059244 3 0.90500983 -1.3067601 1 -0.17525893 -1.1660321 2 -0.05585689 -0.2059244 3 0.90500983 -1.3067601 1
3 3 0.90500983 -1.3067601 2 -0.05585689 -0.2059244 2 -0.05585689 -0.2059244 1 -0.17525893 -1.1660321 1 -0.17525893 -1.1660321 3
y1.y.2 y2.y.2
1 -0.05585689 -0.2059244
2 -0.17525893 -1.1660321
3 0.90500983 -1.3067601
>
> # and here is the one-liner version
> subset(Reduce(function(df1, df2) merge(df1, df2, by="idx"), llply(permn(nrow(d)), function(i)data.frame(idx=1:nrow(d), d[i,]))), select=-c(idx))
x.x y1.x y2.x x.y y1.y y2.y x.x.1 y1.x.1 y2.x.1 x.y.1 y1.y.1 y2.y.1 x.x.2 y1.x.2 y2.x.2 x.y.2
1 1 -0.17525893 -1.1660321 1 -0.17525893 -1.1660321 3 0.90500983 -1.3067601 3 0.90500983 -1.3067601 2 -0.05585689 -0.2059244 2
2 2 -0.05585689 -0.2059244 3 0.90500983 -1.3067601 1 -0.17525893 -1.1660321 2 -0.05585689 -0.2059244 3 0.90500983 -1.3067601 1
3 3 0.90500983 -1.3067601 2 -0.05585689 -0.2059244 2 -0.05585689 -0.2059244 1 -0.17525893 -1.1660321 1 -0.17525893 -1.1660321 3
y1.y.2 y2.y.2
1 -0.05585689 -0.2059244
2 -0.17525893 -1.1660321
3 0.90500983 -1.3067601
If you provide information in more detail, probably you can get better answers.
Well, it's nowhere close to a one-liner (which I kind of doubt is possible) but here's a 'naive' approach:
dat <- data.frame(x=1:5,y1=6:10,y2=11:15)
#Collect all ordered pairs of elements of x
tmp <- expand.grid(dat$x,dat$x)
tmp <- tmp[tmp[,1] != tmp[,2],]
#Init a matrix to hold the results
rs <- as.matrix(cbind(tmp,matrix(NA,nrow(tmp),4)))
#Loop through each ordered pair
for (i in 1:nrow(rs)){
rs[i,3:6] <- c(dat$y1[rs[i,1:2]],dat$y2[rs[i,1:2]])
}
I didn't name the columns, but that's easily done after the fact.
Not very elegant, but maybe something to get you started...
精彩评论