Finding Friend of Friend in a Dictionary using Levenshtein distance
Following is what I am trying to do.
Two words W1
and W2
are friends if the Levenshtein distance
for those words are 1.
I am supposed to find all the friend of friend also. I tried to do the same thing with Bk-Tree. It works for small size dictionary ( dictionary only contain one word per line )
but For bigger dictionary it is slowing down heavily and runs for more than a hour still no result.
Following is my code so far
#include <string>
#include <vector>
#include <queue>
#include <fstream>
#include <iostream>
#include <algorithm>
class BkTree {
public:
BkTree();
~BkTree();
void insert(std::string m_item);
void get_friends(std::string center, std::deque<std::string>& friends);
private:
size_t EditDistance( const std::string &s, const std::string &t );
struct Node {
std::string m_item;
size_t m_distToParent;
Node *m_firstChild;
Node *m_nextSibling;
Node(std::string x, size_t dist);
bool visited;
~Node();
};
Node *m_root;
int m_size;
protected:
};
BkTree::BkTree() {
m_root = NULL;
m_size = 0;
}
BkTree::~BkTree() {
if( m_root )
delete m_root;
}
BkTree::Node::Node(std::string x, size_t dist) {
m_item = x;
m_distToParent = dist;
m_firstChild = m_nextSibling = NULL;
visited = false;
}
BkTree::Node::~Node() {
if( m_firstChild )
delete m_firstChild;
if( m_nextSibling )
delete m_nextSibling;
}
void BkTree::insert(std::string m_item) {
if( !m_root ){
m_size = 1;
m_root = new Node(m_item, -1);
return;
}
Node *t = m_root;
while( true ) {
size_t d = EditDistance( t->m_item, m_item );
if( !d )
return;
Node *ch = t->m_firstChild;
while( ch ) {
if( ch->m_distToParent == d ) {
t = ch;
break;
}
ch = ch->m_nextSibling;
}
if( !ch ) {
开发者_StackOverflow Node *newChild = new Node(m_item, d);
newChild->m_nextSibling = t->m_firstChild;
t->m_firstChild = newChild;
m_size++;
break;
}
}
}
size_t BkTree::EditDistance( const std::string &left, const std::string &right ) {
size_t asize = left.size();
size_t bsize = right.size();
std::vector<size_t> prevrow(bsize+1);
std::vector<size_t> thisrow(bsize+1);
for(size_t i = 0; i <= bsize; i++)
prevrow[i] = i;
for(size_t i = 1; i <= asize; i ++) {
thisrow[0] = i;
for(size_t j = 1; j <= bsize; j++) {
thisrow[j] = std::min(prevrow[j-1] + size_t(left[i-1] != right[j-1]),
1 + std::min(prevrow[j],thisrow[j-1]) );
}
std::swap(thisrow,prevrow);
}
return prevrow[bsize];
}
void BkTree::get_friends(std::string center, std::deque<std::string>& flv) {
if( !m_root ) return ;
std::queue< Node* > q;
q.push( m_root );
while( !q.empty() ) {
Node *t = q.front();
q.pop();
if ( !t ) continue;
size_t d = EditDistance( t->m_item, center );
if( d == 1 ) {
if ( t->visited == false ) {
flv.push_back(t->m_item);
t->visited = true;
}
}
Node *ch = t->m_firstChild;
q.push(ch);
while( ch ) {
if( ch->m_distToParent >= 1 )
q.push(ch);
ch = ch->m_nextSibling;
}
}
return;
}
int main( int argc, char **argv ) {
BkTree *pDictionary = new BkTree();
std::ifstream dictFile("word.list");
std::string line;
if (dictFile.is_open()) {
while (! dictFile.eof() ) {
std::getline (dictFile,line);
if ( line.size()) {
pDictionary->insert(line);
}
}
dictFile.close();
}
std::deque<std::string> flq;
pDictionary->get_friends("aa", flq);
int counter = 0;
while ( !flq.empty()) {
counter++;
std::string nf = flq.front();
flq.pop_front();
pDictionary->get_friends(nf, flq);
}
std::cout << counter << std::endl;
return 0;
}
Any comments on improving the speed, or any other suitable data-structure.
Assume following is my dictionary.
aa
aah
aal
aam
aami
aamii
aaaaaaaaaaaaaaaaaaaaaaaaa
I am trying to find the social network
of aa
answer is 5
.
aa -> aah aal aam
aah -> aa, aal aam
aal -> aa, aah, aam
aam -> aa, aah, aal, aami
aami -> aam, aamii
ANSWER : -> aah + aal + aam + aami + aamii
Have a read of Fast and Easy Levenshtein distance using a Trie for details of an efficient way of solving this.
In your example code, isn't a "friend of a friend" an edit distance of 2 (or 0)? You can probably stop using a depth first search and just directly compare whether the Levenshtein distance is 0 or 2 (zero indicates that the edit is "undone" by the second relationship e.g. A -> B has an edit distance of 1, B -> C has an edit distance of 1 that exactly undoes the A -> B edit giving an edit distance of zero between A -> C).
This also seems related to the word ladders puzzles. A great visualization of the explosion of variations is available here. I guess for your algorithm you want to find all paths between pairs of words that are of length 2? Perhaps expressing it as a word ladders problems for all pairs will give you a new approach?
精彩评论