Miller-Rabin test: bug in my code
I've written a Miller-Rabin primality test based on the following pseudo code:
Input: n > 2, an odd integer to be tested for primality;
k, a parameter that determines the accuracy of the test
Output: composite if n is composite, otherwise probably prime
write n − 1 as 2s·d with d odd by factoring powers of 2 from n − 1
LOOP: repeat k times:
pick a randomly in the range [2, n − 1]
x ← ad mod n
开发者_Python百科 if x = 1 or x = n − 1 then do next LOOP
for r = 1 .. s − 1
x ← x2 mod n
if x = 1 then return composite
if x = n − 1 then do next LOOP
return composite
return probably prime
The code I have rarely gets past 31 (if I put it in a loop to test numbers from 2 to 100). There must be something wrong but I can't see what it is.
bool isProbablePrime(ulong n, int k) {
if (n < 2 || n % 2 == 0)
return n == 2;
ulong d = n - 1;
ulong s = 0;
while (d % 2 == 0) {
d /= 2;
s++;
}
assert(2 ^^ s * d == n - 1);
outer:
foreach (_; 0 .. k) {
ulong a = uniform(2, n);
ulong x = (a ^^ d) % n;
if (x == 1 || x == n - 1)
continue;
foreach (__; 1 .. s) {
x = (x ^^ 2) % n;
if (x == 1) return false;
if (x == n - 1) continue outer;
}
return false;
}
return true;
}
I've also tried the variant
...
foreach (__; 1 .. s) {
x = (x ^^ 2) % n;
if (x == 1) return false;
if (x == n - 1) continue outer;
}
if ( x != n - 1) return false; // this is different
...
I have a different version of the test that works correctly but it uses modpow. I'd like to have a version that stays closer to the pseudo code that's part of the rossetta.org task description.
Edit: Re: overflow problem. I suspected something like that. I'm still puzzled why the Ruby version doesn't have that problem. It probably handles it differently under the hood. If I use BigInt, the code does work, but becomes a lot slower than when I use modpow. So I guess I can't get away from that. It's a pity Phobos doesn't have a modpow built-in, or I must have overlooked it.
ulong x = ((BigInt(a) ^^ d) % BigInt(n)).toLong();
In this statement
ulong x = (a ^^ d) % n;
the quantity (a ^^ d)
is probably overflowing before the mod operation can take place. The modpow version wouldn't suffer from this problem, since that algorithm avoids the need for arbitrarily large intermediate values.
精彩评论