Optimized matrix multiplication in C
I'm trying to compare different methods for matrix multiplication. The first one is normal method:
do
{
for (j = 0; j < i; j++)
{
for (k = 0; k < i; k++)
{
开发者_如何学Csuma = 0;
for (l = 0; l < i; l++)
suma += MatrixA[j][l]*MatrixB[l][k];
MatrixR[j][k] = suma;
}
}
}
c++;
} while (c<iteraciones);
The second one consist of transposing the matrix B first and then do the multiplication by rows:
int f, co;
for (f = 0; f < i; f++) {
for ( co = 0; co < i; co++) {
MatrixB[f][co] = MatrixB[co][f];
}
}
c = 0;
do
{
for (j = 0; j < i; j++)
{
for (k = 0; k < i; k++)
{
suma = 0;
for (l = 0; l < i; l++)
suma += MatrixA[j][l]*MatrixB[k][l];
MatrixR[j][k] = suma;
}
}
}
c++;
} while (c<iteraciones);
The second method supposed to be much faster, because we are accessing contiguous memory slots, but I'm not getting a significant improvement in the performance. Am I doing something wrong?
I can post the complete code, but I think is not needed.
What Every Programmer Should Know About Memory (pdf link) by Ulrich Drepper has a lot of good ideas about memory efficiency, but in particular, he uses matrix multiplication as an example of how knowing about memory and using that knowledge can speed this process. Look at appendix A.1 in his paper, and read through section 6.2.1. Table 6.2 in the paper shows that he could get his running time to be 10% from a naive implementation's time for a 1000x1000 matrix.
Granted, his final code is pretty hairy and uses a lot of system-specific stuff and compile-time tuning, but still, if you really need speed, reading that paper and reading his implementation is definitely worth it.
Getting this right is non-trivial. Using an existing BLAS library is highly recommended.
Should you really be inclined to roll your own matrix multiplication, loop tiling is an optimization that is of particular importance for large matrices. The tiling should be tuned to the cache size to ensure that the cache is not being continually thrashed, which will occur with a naive implementation. I once measured a 12x performance difference tiling a matrix multiply with matrix sizes picked to consume multiples of my cache (circa '97 so the cache was probably small).
Loop tiling algorithms assume that a contiguous linear array of elements is used, as opposed to rows or columns of pointers. With such a storage choice, your indexing scheme determines which dimension changes fastest, and you are free to decide whether row or column access will have the best cache performance.
There's a lot of literature on the subject. The following references, especially the Banerjee books, may be helpful:
[Ban93] Banerjee, Utpal, Loop Transformations for Restructuring Compilers: the Foundations, Kluwer Academic Publishers, Norwell, MA, 1993.
[Ban94] Banerjee, Utpal, Loop Parallelization, Kluwer Academic Publishers, Norwell, MA, 1994.
[BGS93] Bacon, David F., Susan L. Graham, and Oliver Sharp, Compiler Transformations for High-Performance Computing, Computer Science Division, University of California, Berkeley, Calif., Technical Report No UCB/CSD-93-781.
[LRW91] Lam, Monica S., Edward E. Rothberg, and Michael E Wolf. The Cache Performance and Optimizations of Blocked Algorithms, In 4th International Conference on Architectural Support for Programming Languages, held in Santa Clara, Calif., April, 1991, 63-74.
[LW91] Lam, Monica S., and Michael E Wolf. A Loop Transformation Theory and an Algorithm to Maximize Parallelism, In IEEE Transactions on Parallel and Distributed Systems, 1991, 2(4):452-471.
[PW86] Padua, David A., and Michael J. Wolfe, Advanced Compiler Optimizations for Supercomputers, In Communications of the ACM, 29(12):1184-1201, 1986.
[Wolfe89] Wolfe, Michael J. Optimizing Supercompilers for Supercomputers, The MIT Press, Cambridge, MA, 1989.
[Wolfe96] Wolfe, Michael J., High Performance Compilers for Parallel Computing, Addison-Wesley, CA, 1996.
ATTENTION: You have a BUG in your second implementation
for (f = 0; f < i; f++) {
for (co = 0; co < i; co++) {
MatrixB[f][co] = MatrixB[co][f];
}
}
When you do f=0, c=1
MatrixB[0][1] = MatrixB[1][0];
you overwrite MatrixB[0][1]
and lose that value! When the loop gets to f=1, c=0
MatrixB[1][0] = MatrixB[0][1];
the value copied is the same that was already there.
You should not write matrix multiplication. You should depend on external libraries. In particular you should use the GEMM
routine from the BLAS
library. GEMM often provides the following optimizations
Blocking
Efficient Matrix Multiplication relies on blocking your matrix and performing several smaller blocked multiplies. Ideally the size of each block is chosen to fit nicely into cache greatly improving performance.
Tuning
The ideal block size depends on the underlying memory hierarchy (how big is the cache?). As a result libraries should be tuned and compiled for each specific machine. This is done, among others, by the ATLAS
implementation of BLAS
.
Assembly Level Optimization
Matrix multiplicaiton is so common that developers will optimize it by hand. In particular this is done in GotoBLAS
.
Heterogeneous(GPU) Computing
Matrix Multiply is very FLOP/compute intensive, making it an ideal candidate to be run on GPUs. cuBLAS
and MAGMA
are good candidates for this.
In short, dense linear algebra is a well studied topic. People devote their lives to the improvement of these algorithms. You should use their work; it will make them happy.
If the matrix is not large enough or you don't repeat the operations a high number of times you won't see appreciable differences.
If the matrix is, say, 1,000x1,000 you will begin to see improvements, but I would say that if it is below 100x100 you should not worry about it.
Also, any 'improvement' may be of the order of milliseconds, unless yoy are either working with extremely large matrices or repeating the operation thousands of times.
Finally, if you change the computer you are using for a faster one the differences will be even narrower!
How big improvements you get will depend on:
- The size of the cache
- The size of a cache line
- The degree of associativity of the cache
For small matrix sizes and modern processors it's highly probable that the data fron both MatrixA
and MatrixB
will be kept nearly entirely in the cache after you touch it the first time.
Just something for you to try (but this would only make a difference for large matrices): seperate out your addition logic from the multiplication logic in the inner loop like so:
for (k = 0; k < i; k++)
{
int sums[i];//I know this size declaration is illegal in C. consider
//this pseudo-code.
for (l = 0; l < i; l++)
sums[l] = MatrixA[j][l]*MatrixB[k][l];
int suma = 0;
for(int s = 0; s < i; s++)
suma += sums[s];
}
This is because you end up stalling your pipeline when you write to suma. Granted, much of this is taken care of in register renaming and the like, but with my limited understanding of hardware, if I wanted to squeeze every ounce of performance out of the code, I would do this because now you don't have to stall the pipeline to wait for a write to suma. Since multiplication is more expensive than addition, you want to let the machine paralleliz it as much as possible, so saving your stalls for the addition means you spend less time waiting in the addition loop than you would in the multiplication loop.
This is just my logic. Others with more knowledge in the area may disagree.
Can you post some data comparing your 2 approaches for a range of matrix sizes ? It may be that your expectations are unrealistic and that your 2nd version is faster but you haven't done the measurements yet.
Don't forget, when measuring execution time, to include the time to transpose matrixB.
Something else you might want to try is comparing the performance of your code with that of the equivalent operation from your BLAS library. This may not answer your question directly, but it will give you a better idea of what you might expect from your code.
The computation complexity of multiplication of two N*N matrix is O(N^3). The performance will be dramatically improved if you use O(N^2.73) algorithm which probably has been adopted by MATLAB. If you installed a MATLAB, try to multiply two 1024*1024 matrix. On my computer, MATLAB complete it in 0.7s, but the C\C++ implementation of the naive algorithm like yours takes 20s. If you really care about the performance, refer to lower-complex algorithms. I heard there exists O(N^2.4) algorithm, however it needs a very large matrix so that other manipulations can be neglected.
not so special but better :
c = 0;
do
{
for (j = 0; j < i; j++)
{
for (k = 0; k < i; k++)
{
sum = 0; sum_ = 0;
for (l = 0; l < i; l++) {
MatrixB[j][k] = MatrixB[k][j];
sum += MatrixA[j][l]*MatrixB[k][l];
l++;
MatrixB[j][k] = MatrixB[k][j];
sum_ += MatrixA[j][l]*MatrixB[k][l];
sum += sum_;
}
MatrixR[j][k] = sum;
}
}
c++;
} while (c<iteraciones);
Generally speaking, transposing B should end up being much faster than the naive implementation, but at the expense of wasting another NxN worth of memory. I just spent a week digging around matrix multiplication optimization, and so far the absolute hands-down winner is this:
for (int i = 0; i < N; i++)
for (int k = 0; k < N; k++)
for (int j = 0; j < N; j++)
if (likely(k)) /* #define likely(x) __builtin_expect(!!(x), 1) */
C[i][j] += A[i][k] * B[k][j];
else
C[i][j] = A[i][k] * B[k][j];
This is even better than Drepper's method mentioned in an earlier comment, as it works optimally regardless of the cache properties of the underlying CPU. The trick lies in reordering the loops so that all three matrices are accessed in row-major order.
If you are working on small numbers, then the improvement you are mentioning is negligible. Also, performance will vary depend on the Hardware on which you are running. But if you are working on numbers in millions, then it will effect. Coming to the program, can you paste the program you have written.
Very old question, but heres my current implementation for my opengl projects:
typedef float matN[N][N];
inline void matN_mul(matN dest, matN src1, matN src2)
{
unsigned int i;
for(i = 0; i < N^2; i++)
{
unsigned int row = (int) i / 4, col = i % 4;
dest[row][col] = src1[row][0] * src2[0][col] +
src1[row][1] * src2[1][col] +
....
src[row][N-1] * src3[N-1][col];
}
}
Where N is replaced with the size of the matrix. So if you are multiplying 4x4 matrices, then you use:
typedef float mat4[4][4];
inline void mat4_mul(mat4 dest, mat4 src1, mat4 src2)
{
unsigned int i;
for(i = 0; i < 16; i++)
{
unsigned int row = (int) i / 4, col = i % 4;
dest[row][col] = src1[row][0] * src2[0][col] +
src1[row][1] * src2[1][col] +
src1[row][2] * src2[2][col] +
src1[row][3] * src2[3][col];
}
}
This function mainly minimizes loops but the modulus might be taxing... On my computer this function performed roughly 50% faster than a triple for loop multiplication function.
Cons:
Lots of code needed (ex. different functions for mat3 x mat3, mat5 x mat5...)
Tweaks needed for irregular multiplication (ex. mat3 x mat4).....
精彩评论