How to generalize outer to n dimensions?
The standard R expression outer(X, Y, f)
evaluates to a matrix whose (i, j)-th entry has the value f(X[i], Y[j])
.
I would like to implement the function multi.outer
, an n-dimensional generalization of outer
: multi.outer(f, X_1, ..., X_n)
, where f is some n-ary function, would produce a (length(X_1) * ... * length(X_n)) array whose (i_1,...,i_n)-th entry has the value f(X_1[i_1], ..., X_n[i_n])
for all valid index sets (i_1,...,i_n). Clearly, for each i in {1, ..., n}, all the elements of X_i
in multi.outer(f, X_1,...,X_i,..., X_n)
must be allowable i-th arguments for the function f
. For the case n=2, multi.outer
would do the same thing as outer
, although it would have a different signature (IOW, multi.outer(f, X, Y)
would be equivalent to outer(X, Y, f)
).
It is important to note that, although the arguments X_1, ..., X_n of multi.outer
are all vectors, they don't necess开发者_JAVA百科arily all have the same mode. E.g. X_1 and X_2 could be c(1, 2, 3)
and LETTERS[10:20]
, respectively.
Thanks!
This is one way: First use Vectorize
and outer
to define a function that creates an n-dimensional matrix where each entry is a list of arguments on which the given function will be applied:
list_args <- Vectorize( function(a,b) c( as.list(a), as.list(b) ),
SIMPLIFY = FALSE)
make_args_mtx <- function( alist ) {
Reduce(function(x, y) outer(x, y, list_args), alist)
}
Now multi.outer
just needs to invoke apply
and do.call
on this "args-matrix" :
multi.outer <- function(f, ... ) {
args <- make_args_mtx(list(...))
apply(args, 1:length(dim(args)), function(a) do.call(f, a[[1]] ) )
}
Let's try this with an example function:
fun <- function(a,b,c) paste(a,b,c)
ans <- multi.outer(fun, LETTERS[1:2], c(3, 4, 5), letters[6:7] )
> ans
, , 1
[,1] [,2] [,3]
[1,] "A 3 f" "A 4 f" "A 5 f"
[2,] "B 3 f" "B 4 f" "B 5 f"
, , 2
[,1] [,2] [,3]
[1,] "A 3 g" "A 4 g" "A 5 g"
[2,] "B 3 g" "B 4 g" "B 5 g"
How about this:
multi.outer<-function(f,...){
apply(expand.grid(...),1,function(x){do.call(f,as.list(x))})
}
I think we can do this using Outer and Vectorize.
sigm = function(a=0,b=0,x){
return(exp(x*a+b))
}
sigm1 = Vectorize(function(a=-1:1,b=-1:1,x){
outer(a,b,sigm,x)
},SIMPLIFY = FALSE)
Now, sigm1(x=1:3) gives the required output
[[1]]
[,1] [,2] [,3]
[1,] 0.1353353 0.3678794 1.000000
[2,] 0.3678794 1.0000000 2.718282
[3,] 1.0000000 2.7182818 7.389056
[[2]]
[,1] [,2] [,3]
[1,] 0.04978707 0.1353353 0.3678794
[2,] 0.36787944 1.0000000 2.7182818
[3,] 2.71828183 7.3890561 20.0855369
[[3]]
[,1] [,2] [,3]
[1,] 0.01831564 0.04978707 0.1353353
[2,] 0.36787944 1.00000000 2.7182818
[3,] 7.38905610 20.08553692 54.5981500
The only draw back with this code snippet is I am using the default values of a=-1:1 and b=-1:1. When I try to pass the same during function calling, it goes haywire. E.g.
sigm1(-1:1,-1:1,1:3)
[[1]]
[,1]
[1,] 0.1353353
[[2]]
[,1]
[1,] 1
[[3]]
[,1]
[1,] 54.59815
I am unable to figure out why passing the arguments is making this difference in output.
精彩评论