Melting/casting my data into shape
I have a table that looks like this:
And I need it to look like this, w开发者_JAVA技巧here net=gross-tare:
How do I do this?
I started by melting the data, then casting as columns, and then creating new columns for the net readings.
df_m <- melt(df, id = 1:3)
df_c <- cast(df_m, ... ~ variable + type)
df_c$wr_net <- df_c$wr_gross - df_c$wr_tare
df_c$wc_net <- df_c$wc_gross - df_c$wc_tare
df_c$tsa_net <- df_c$tsa_gross - df_c$tsa_tare
Which gives
But now I can't figure out how to melt this table to get the dataframe to look the way I need with a column for 'type' with values 'gross' and 'tare' and 'net'.
Is there an easier way? Am I barking up the wrong tree with melt/cast?
You can reproduce a small sample of my data using this...
df <- structure(list(train = structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = "AC0485n", class = "factor"),
position = c(1L, 1L, 2L, 2L, 3L, 3L), type = structure(c(2L,
1L, 2L, 1L, 2L, 1L), .Label = c("gross", "tare"), class = "factor"),
wids_raw = c(24.85, 146.2, 26.16, 135, 24.7, 135.1), wids_corr = c(26.15,
145.43, 27.44, 134.43, 26, 134.52), tsa = c(24.1, 139.2,
25, 133.6, 24, 131.1)), .Names = c("train", "position", "type",
"wr", "wc", "tsa"), class = "data.frame", row.names = c(NA,
-6L))
If you really wanted to do it just using reshape, here's how I'd do it:
library(reshape2)
df_m <- melt(df, id = 1:3)
df_c <- dcast(df_m, ... ~ type)
df_c$net <- df_c$gross - df_c$tare
df_m2 <- melt(df_c, 1:3)
names(df_m2)[4] <- "type"
dcast(df_m2, ... ~ variable)
I think all you need is to use ddply:
ddply(df,.(position),.fun=function(x){
newrow <- x[1,]
newrow$type <- "net"
newrow[4:6] <- x[x$type=="gross",4:6] - x[x$type=="tare",4:6]
return(rbind(x,newrow))
})
which returns,
train position type wr wc tsa
1 AC0485n 1 tare 24.85 26.15 24.1
2 AC0485n 1 gross 146.20 145.43 139.2
3 AC0485n 1 net 121.35 119.28 115.1
4 AC0485n 2 tare 26.16 27.44 25.0
5 AC0485n 2 gross 135.00 134.43 133.6
6 AC0485n 2 net 108.84 106.99 108.6
7 AC0485n 3 tare 24.70 26.00 24.0
8 AC0485n 3 gross 135.10 134.52 131.1
9 AC0485n 3 net 110.40 108.52 107.1
EDIT: And I think this works if you really want to use melt/cast:
dd <- melt.data.frame(df_c,id.vars=1:2)
dd$type <- factor(do.call("rbind",strsplit(as.character(dd$variable),"_"))[,2])
dd$variable <- factor(do.call("rbind",strsplit(as.character(dd$variable),"_"))[,1])
精彩评论