Bind void * pointer to C++/Cli pointer of elementary type
I do some thin wrapper of some scientific library (http://root.cern.ch) from unmanaged to managed world using C++ cli.
Reading of the special file format (which is the main goal) is implemented through:
1) Once a lifetime call of SetBranchAddress(const char name, void* outputVariable) to let it know an address of your variable 2) Than you N time call GetEntry(ulong numberOfRow) wthich fills this void* outputVariable with the appropriate value;I put this example of usage :
double myValue; //this field will be filled
//We bind myValue to开发者_开发问答 the 'column' called "x" stored in the file"
TTree->SetBranchAddress("x", &myValue);
// read first "entry" (or "row") of the file
TTree->GetEntry(0);
// from that moment myValue is filled with value of column "x" of the first row
cout<<"First entry x = "<<myValue<<endl;
TTree->GetEntry(100); //So myValue is filled with "x" of 101 row
...
So in C++/CLI code the problem is with binding managed elementary types to this void * pointer;
I have tried 3 approaches:
namespace CppLogicLibrary {
public ref class SharpToRoot
{
double mEventX;
double *mEventY;
IntPtr memEventZ;
///Constructor
SharpToRoot()
{
mEventy = new double();
memEventZ= Marshal::AllocHGlobal(sizeof(double));
}
void SetBranchAddresses()
{
pin_ptr<double> pinnedEventX = &mEventX;
mTree->SetBranchAddress("ev_x", pinnedEventX);
mTree->SetBranchAddress("ev_y", mEventY);
mTree->SetBranchAddress("ev_z", memEventZ.ToPointer());
...
//now I read some entry to test... just in place
mTree->GetEntry(100);
mTree->GetEntry(101);
double x = mEventX;
double y = *mEventY
double z = (double)Marshal::PtrToStructure(memEventZ, Double::typeid);
}
...
All of 3 variants are compiled with no errors, goes with no exceptions... BUT fills its (void *) values with some rubbish value like 5,12331E-305. In unmanaged code all works fine.
What could be the error with such void* to C++/CLI elementary types binding?
The problem was that internally data was presented by floats inside of this library. So, when it was mapped and processed as doubles on the C# side, it gave 5,12331E-305.
Each of this 3 variats worked. And, from my point of view, using of pin_ptr pinnedEventX = &mEventX; was improper in this case, because it doesn't persist between functions execution;
What I'm not sure, why this "float" situation was handled in native C++. As I wrote before, there wasn't any problem.
精彩评论