Parallel.ForEach slower than foreach
Here is the code:
using (var context = new AventureWorksDataContext())
{
IEnumerable<Customer> _customerQuery = from c in context.Customers
where c.FirstName.StartsWith("A")
select c;
var watch = new Stopwatch();
watch.Start();
var result = Parallel.ForEach(_customerQuery, c => Console.WriteLine(c.FirstName));
watch.Stop();
Debug.WriteLine(watch.ElapsedMilliseconds);
watch = new Stopwatch();
watch.Start();
foreach (var customer in _customerQuery)
{
Console.WriteLine(customer.FirstName);
}
watch.Stop();
Debug.WriteLine(watch.ElapsedMilliseconds);
}
The problem is, P开发者_高级运维arallel.ForEach
takes about 400ms vs a regular foreach
, which takes about 40ms. What exactly am I doing wrong and why doesn't this work as I expect it to?
Suppose you have a task to perform. Let's say you're a math teacher and you have twenty papers to grade. It takes you two minutes to grade a paper, so it's going to take you about forty minutes.
Now let's suppose that you decide to hire some assistants to help you grade papers. It takes you an hour to locate four assistants. You each take four papers and you are all done in eight minutes. You've traded 40 minutes of work for 68 total minutes of work including the extra hour to find the assistants, so this isn't a savings. The overhead of finding the assistants is larger than the cost of doing the work yourself.
Now suppose you have twenty thousand papers to grade, so it is going to take you about 40000 minutes. Now if you spend an hour finding assistants, that's a win. You each take 4000 papers and are done in a total of 8060 minutes instead of 40000 minutes, a savings of almost a factor of 5. The overhead of finding the assistants is basically irrelevant.
Parallelization is not free. The cost of splitting up work amongst different threads needs to be tiny compared to the amount of work done per thread.
Further reading:
Amdahl's law
Gives the theoretical speedup in latency of the execution of a task at fixed workload, that can be expected of a system whose resources are improved.
Gustafson's law
Gives the theoretical speedup in latency of the execution of a task at fixed execution time, that can be expected of a system whose resources are improved.
The first thing you should realize is that not all parallelism is beneficial. There is an amount of overhead to parallelism, and this overhead may or may not be significant depending on the complexity what is being parallelized. Since the work in your parallel function is very small, the overhead of the management the parallelism has to do becomes significant, thus slowing down the overall work.
The additional overhead of creating all the threads for your enumerable VS just executing the numerable is more than likely the cause for the slowdown. Parallel.ForEach
is not a blanket performance increasing move; it needs to be weighed whether or not the operation that is to be completed for each element is likely to block.
For example, if you were to make a web request or something instead of simply writing to the console, the parallel version might be faster. As it is, simply writing to the console is a very fast operation, so the overhead of creating the threads and starting them is going to be slower.
As previous writer has said there are some overhead associated with Parallel.ForEach
, but that is not why you can't see your performance improvement. Console.WriteLine
is a synchronous operation, so only one thread is working at a time. Try changing the body to something non-blocking and you will see the performance increase (as long as the amount of work in the body is big enough to outweight the overhead).
I like salomons answer and would like to add that you also have additional overhead of
- Allocating delegates.
- Calling through them.
精彩评论