开发者

Why does the PHP version run faster than MySQL

I have two very large tables to merge and so I have been trying to optomize the update for speed. I noticed that doing the update partially in PHP speeded it up significantly so I assumed this means I'm not be doing the MySQL properly.

I have simplified the problem to try and narrow it down ...

GRID_TABLE                                  POSTCODE_TABLE
idNo, lat,  lng,  nearestPostcode           postcode,  lat,   lng
________________________________            _____________________
1     57.1  -2.3  -                         AB12 3BA   56.3  -2.5
2     56.8  -1.9  -                         AB12 1YA   56.2  -2.3
. . .                                       . . .

(200 entries)                               (35,000 entries)

I want to update the GRID_TABLE with the nearestPostcode from the POSTCODE_TABLE using latitude (lat) and longitude (lng) to find the nearest postcode to each grid point...

update grid_table set nearestPostcode = (
    select postcode from postcode_table 
    where lat > grid_table.lat -0.0037 and lat < grid_table.lat +0.0037 
        and lng > grid_table.lng -0.0068 and lng < grid_table.lng +0.0068
    order by POW(lat - grid_table.lat,2) + POW((lng - grid_table.lng) *0.546,2) 
    limit 1 
    )

The idea is that the 'where' clause speeds up the search by using indexes to narrow the set down to a few candidates and then the 'order by' clause finds the nearest one within this set.

This MySQL update takes 30 secs, but if I instead update each GRID_TABLE row individually in PHP it's over in the blink of an eye.

$queryStg = "select * from grid_table ;";
$sqlQuery1 = mysqli_query($mysqliLink, $queryStg);

while( $sqlRow = mysqli_fetch_assoc( $sqlQuery1 ) ) {

    $idNo = $sqlRow['idNo'];
    $lat = $sqlRow['lat'];
    $lng = $sqlRow['lng'];

    $queryStg = "
        update grid_table
            set nearestPostcode = (
                SELECT postcode
                FROM postcode_table
                where
                    lat > " . ($lat - 0.0037) . " and
                    lat < " . ($lat + 0.0037) . " and
                    lng > " . ($lng - 0.0068) . " and
                    lng < " . ($lng + 0.0068) . "
                ORDER BY
                    POW(lat - $lat, 2) +
                    POW((lng - $lng) * 0.546, 2)
                    ASC
                limit 1
                )
            where idNo= $idNo;
        ";

    $sqlQuery2 = mysqli_query($mysqliLink, $queryStg);

}

Surely the MySQL version should be faster than the PHP version?

Here is the MySQL for the tables...

CREATE TABLE `grid_table` (
    `idNo` INT(11) NOT NULL AUTO_INCREMENT,
    `lat` FLOAT(6,4) NOT NULL COMMENT 'latitude',
    `lng` FLOAT(6,4) NOT NULL COMMENT 'longitude',
    `nearestPostcode` CHAR(8) NOT NULL,
    PRIMARY KEY (`idNo`),
    INDEX `lat_lng` (`lat`, `lng`)
)
ENGINE=MyISAM
ROW_FORMAT=DEFAULT
AUTO_INCREMENT=30047
CREATE TABLE `postcode_table` (
    `postcode` CHAR(8) NOT NULL,
    `lat` FLOAT(6,4) NOT NULL COMMENT 'latitude',
    `lng` FLOAT(6,4) NOT NULL COMMENT 'longitude',
    PRIMARY KEY (`postcode`),
    INDEX `lat` (`lat`),
    INDEX `lng` (`lng`),
    INDEX `lat_lng` (`lat`, `lng`)
)
ENGINE=MyISAM
ROW_FORMAT=DEFAULT

MySQL import file is here... https://docs.google.com/leaf?id=0B93lksnTC7_cM2Y2ZDk1Y2YtMGQ3Yy00OTIxLTk0ZDAtZmE2NmQ3YTc1ZWRm&hl=en

(if you run the UPDATE, 10 nearestPostcodes will be added).

UPDATE AFTER ANSWERS...

I ran this...

explain extended
 SELECT postcode FROM postcode_table 
 where lat > 57.0 and lat < 57.0074
 and lng > -2.013 and lng < -2
 ORDER BY POW(lat - 57.0, 2) + POW((lng - -2) * 0.546, 2) ASC 

It returned...

id,select_type,table,type,possible_keys,key,key_len,ref,rows,filtered,Extra
1,SIMPLE,postcode_table,range,lat,lng,lat_lng,lat_lng,8,NULL,65,100.00,Using where; Using filesort

Removing the 'order by' caluse -> no difference in sp开发者_Go百科eed.

Simplifying the 'where' clause by removing 'lng', ie

where lat between grid_table.lat - 0.0037 and grid_table.lat + 0.0037 
-> faster: 3 secs rather than 30 secs.

Using spatial column and index (see below) -> much slower (190 sec). Not sure if I implemented this correctly though.

ALTER TABLE `grid_table` ADD COLUMN `coords` POINT NOT NULL;
update grid_table set coords = POINT(lat, lng);
ALTER TABLE `grid_table` ADD SPATIAL INDEX `coords` (`coords`);

ALTER TABLE `postcode_table` ADD COLUMN `coords` POINT NOT NULL;
update postcode_table set coords = POINT(lat, lng);
ALTER TABLE `postcode_table` ADD SPATIAL INDEX `coords` (`coords`);

analyze table grid_table;
optimize table grid_table;
analyze table postcode_table;
optimize table postcode_table;
update grid_table set nearestPostcode = (
    select postcode from postcode_table 
    WHERE MBRContains(GeomFromText(concat(
         'POLYGON((', 
          grid_table.lat - 0.0037, ' ', grid_table.lng - 0.0068, ', ',
          grid_table.lat - 0.0037, ' ', grid_table.lng + 0.0068, ', ',
          grid_table.lat + 0.0037, ' ', grid_table.lng - 0.0068, ', ',
          grid_table.lat - 0.0037, ' ', grid_table.lng - 0.0068, 
          '))')), postcode_table.coords)
     order by POW(lat - grid_table.lat,2) + POW((lng - grid_table.lng) *0.546,2)
     limit 1 
     )


In your MySQL version your subquery works with all 30000 grid_table records, whether in your PHP version -- it's only one. As you add where on outer table PK.

I suggest you here to change update query. For example, try to make it without subquery, multiple-update as here http://dev.mysql.com/doc/refman/5.0/en/update.html.

I believe it should help.

Something like:

update grid_table, postcode_table
set grid_table.nearestPostcode = postcode_table.postcode
where postcode_table.lat > grid_table.lat - 0.0037
and postcode_table.lat < grid_table.lat + 0.0037 
and postcode_table.lng > grid_table.lng - 0.0068
and lng < grid_table.lng + 0.0068
group by grid_table.idNo
having (POW(lat - grid_table.lat,2) + POW((lng - grid_table.lng) *0.546,2)) = min(POW(lat - grid_table.lat,2) + POW((lng - grid_table.lng) *0.546,2))

May be this version could help, but I`m not sure. I assume, the main root problem in your 1st version is subquery over all records.

To have explain update, you can "convert" it to similar select:

explain
select
    *,
    (
        select postcode from postcode_table
        where lat > grid_table.lat -0.0037 and lat < grid_table.lat +0.0037
            and lng > grid_table.lng -0.0068 and lng < grid_table.lng +0.0068
        order by POW(lat - grid_table.lat,2) + POW((lng - grid_table.lng) *0.546,2)
        limit 1
    ) nearestPostcode   
from grid_table

And you will see:

id  select_type table   type    possible_keys   key key_len ref rows    Extra
1   PRIMARY grid_table  ALL                 224 
2   DEPENDENT SUBQUERY  postcode_table  ALL lat,lng,lat_lng             35605   Using where; Using temporary; Using filesort

But in case of idNo we have:

explain
select
    *,
    (
        select postcode from postcode_table
        where lat > grid_table.lat -0.0037 and lat < grid_table.lat +0.0037
            and lng > grid_table.lng -0.0068 and lng < grid_table.lng +0.0068
        order by POW(lat - grid_table.lat,2) + POW((lng - grid_table.lng) *0.546,2)
        limit 1
    ) nearestPostcode   
from grid_table
where idNo = 1487;

id  select_type table   type    possible_keys   key key_len ref rows    Extra
1   PRIMARY grid_table  const   PRIMARY PRIMARY 4   const   1   
2   DEPENDENT SUBQUERY  postcode_table  range   lat,lng,lat_lng lat 4       18  Using where; Using filesort

So we have 35605 rows vs ~18*224 (~4000).

To find correct query try to find good select 1st.

Update

Subquery isn't a root here :( So I think we should try some precalculated + indexed column may be. Target is to avoid order by SOMEFUNC()


Look at the execution plan to know what is taking so long. http://dev.mysql.com/doc/refman/5.5/en/execution-plan-information.html


My guess is that the difference is due to your providing the value of $lat with in the row-by-row query, thereby saving large scans for the lookup here:-

order by POW(lat - grid_table.lat,2)

Like Mr47 says, you'll be able to see by EXPLAIN-ing the SQL statements.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜