开发者

什么是勾股定理?怎么算,请举个例子说明??

黄宗献 2021-04-22 21:03

开发者_如何转开发 勾股定理魏德武证法简明易懂,让人一目了然。用四块全等直角三角板,将每块直角三角形的三边长分别用小写a、b、c来表示,然后依次拼成两块长方形面积(ab+ab=2ab),再将其拆开重新组合,通过形变转化成边长为c的正方形面积,根据两块长方形面积前后不变的原理,无需割补,也不用求证就可轻而易举地得到一个恒等式,即:2ab=c^2-(b-a)^2化简得c^2=a^2+b^2。这就是举世无双的勾股定理魏氏证法!


钟刻林 2021-04-22 21:04

勾股定理:

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

(如下图所示,即a²+b²=c²)

例子:

以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用开发者_C百科勾股定理计算出c的边长。

由勾股定理得,a²+b²=c²→3²+4² =c²

即,9+16=25=c²

c= √25=5

所以我们可以利用勾股定理计算出c的边长为5。

扩展内容:

勾股定理:

勾股定理(Pythagoreantheorem)又称商高定理、毕达哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。

勾股定理的逆定理:

勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:

如果a²+b²=c² ,则△ABC是直角三角形。

如果a²+b²>c² ,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。

如果a²+b²

参考资料:勾股定理-wiki


刘新凯 2021-04-22 21:10开发者_如何转开发

勾股定理魏德武证法到目前为止,可以说他的证法是所有勾股定理证法中最简捷、最实用的首选方法。用四块全等直角三角形边长分别为a、b、c,组成二块长方形面积(ab+ad=2ab),然后再根据前后面积不变的原理,将原四块全等直角三角形面积通过形变,转化成一块正方形面积;这样既不要割补也不需求证,,就可轻而易举地导出直角三角形(2ab=c^2-(b-a)^2,化简后:c^2=a^2+b^2.)三条边的数量关系。古人通常把直角三角形的二条边长分别说成勾和股,所以勾股定理的由来因此而得名。


0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜