Scala method to combine each element of an iterable with each element of another?
If I have this:
val a = Array("a ","b ","c ")
val b = Array("x","y")
I 开发者_运维知识库would like to know if such a method exists which would let me traverse the first collection, and for each of it's elements, walk the entire second collection. For example, if we take the array a
, we would have a,x
,a,y
,b,x
,b,y
,c,x
,c,y
. I know of zip but from what I've seen it only works on collections of the same sizes, and it associates elements from same positions.
I'm not sure of a "method", but this can be expressed with just a nested/compound for
:
val a = Array("a ","b ","c ")
val b = Array("x","y")
for (a_ <- a; b_ <- b) yield (a_, b_)
res0: Array[(java.lang.String, java.lang.String)] = Array((a ,x), (a ,y), (b ,x), (b ,y), (c ,x), (c ,y))
Happy coding.
For a list of a unknown number of lists, of different length, and for maybe different types, you can use this:
def xproduct (xx: List [List[_]]) : List [List[_]] =
xx match {
case aa :: bb :: Nil =>
aa.map (a => bb.map (b => List (a, b))).flatten
case aa :: bb :: cc =>
xproduct (bb :: cc).map (li => aa.map (a => a :: li)).flatten
case _ => xx
}
You would call it
xproduct List (List ("a ", "b ", "c "), List ("x", "y"))
but can call it with Lists of different kind too:
scala> xproduct (List (List ("Beatles", "Stones"), List (8, 9, 10), List ('$', '€')))
res146: List[List[_]] = List(List(Beatles, 8, $), List(Stones, 8, $), List(Beatles, 8, €), List(Stones, 8, €), List(Beatles, 9, $), List(Stones, 9, $), List(Beatles, 9, €), List(Stones, 9, €), List(Beatles, 10, $), List(Stones, 10, $), List(Beatles, 10, €), List(Stones, 10, €))
Arrays have to be converted to Lists, and the result converted back to Arrays, if you can't use Lists.
update:
On the way towards a lazy collection, I made a functional mapping from an index (from 0 to combination-size - 1) to the result at that position, easily calculated with modulo and division, just a bit concentration is needed:
def combicount (xx: List [List[_]]): Int = (1 /: xx) (_ * _.length)
def combination (xx: List [List[_]], i: Int): List[_] = xx match {
case Nil => Nil
case x :: xs => x(i % x.length) :: combination (xs, i / x.length)
}
def xproduct (xx: List [List[_]]): List [List[_]] =
(0 until combicount (xx)).toList.map (i => combination (xx, i))
It's no problem to use a long instead, or even BigInt.
update 2, The iterator:
class Cartesian (val ll: List[List[_]]) extends Iterator [List[_]] {
def combicount (): Int = (1 /: ll) (_ * _.length)
val last = combicount - 1
var iter = 0
override def hasNext (): Boolean = iter < last
override def next (): List[_] = {
val res = combination (ll, iter)
iter += 1
res
}
def combination (xx: List [List[_]], i: Int): List[_] = xx match {
case Nil => Nil
case x :: xs => x (i % x.length) :: combination (xs, i / x.length)
}
}
I'm using the following extensively in my code. Note that this is working for an arbitrary number of lists. It is creating an Iterator instead of a collection, so you don't have to store the potentially huge result in memory.
Any improvements are very welcome.
/**
* An iterator, that traverses every combination of objects in a List of Lists.
* The first Iterable will be incremented fastest. So consider the head as
* the "least significant" bit when counting.*/
class CombinationIterator[A](val components: List[Iterable[A]]) extends Iterator[List[A]]{
private var state: List[BufferedIterator[A]] = components.map(_.iterator.buffered)
private var depleted = state.exists(_.isEmpty)
override def next(): List[A] = {
//this function assumes, that every iterator is non-empty
def advance(s: List[(BufferedIterator[A],Iterable[A])]): List[(BufferedIterator[A],A)] = {
if( s.isEmpty ){
depleted = true
Nil
}
else {
assert(!s.head._1.isEmpty)
//advance and return identity
val it = s.head._1
val next = it.next()
if( it.hasNext){
//we have simply incremented the head, so copy the rest
(it,next) :: s.tail.map(t => (t._1,t._1.head))
} else {
//we have depleted the head iterator, reset it and increment the rest
(s.head._2.iterator.buffered,next) :: advance(s.tail)
}
}
}
//zipping the iterables to the iterators is needed for resseting them
val (newState, result) = advance(state.zip(components)).unzip
//update state
state = newState
result
}
override def hasNext = !depleted
}
So using this one, you have to write new CombinationIterator(List(a,b))
to obtain an iterator that goes through every combination.
Edit: based on user unkown's version
Note that the following version is not optimal (performance wise):
- indexed access into lists (use arrays instead)
- takeWhile evaluates after every element
.
scala> def combination(xx: List[List[_]], i: Int): List[_] = xx match {
| case Nil => Nil
| case x :: xs => x(i % x.length) :: combination(xs, i/x.length)
| }
combination: (xx: List[List[_]], i: Int)List[_]
scala> def combinationIterator(ll: List[List[_]]): Iterator[List[_]] = {
| Iterator.from(0).takeWhile(n => n < ll.map(_.length).product).map(combination(ll,_))
| }
combinationIterator: (ll: List[List[_]])Iterator[List[_]]
scala> List(List(1,2,3),List("a","b"),List(0.1,0.2,0.3))
res0: List[List[Any]] = List(List(1, 2, 3), List(a, b), List(0.1, 0.2, 0.3))
scala> combinationIterator(res0)
res1: Iterator[List[_]] = non-empty iterator
scala> res1.mkString("\n")
res2: String =
List(1, a, 0.1)
List(2, a, 0.1)
List(3, a, 0.1)
List(1, b, 0.1)
List(2, b, 0.1)
List(3, b, 0.1)
List(1, a, 0.2)
List(2, a, 0.2)
List(3, a, 0.2)
List(1, b, 0.2)
List(2, b, 0.2)
List(3, b, 0.2)
List(1, a, 0.3)
List(2, a, 0.3)
List(3, a, 0.3)
List(1, b, 0.3)
List(2, b, 0.3)
List(3, b, 0.3)
If you want to show off your deep knowledge of higher kinded types and category theory, you can write:
trait Applicative[App[_]] {
def pure[A](a: A): App[A]
def fmap[A,B](f: A => B, appA: App[A]): App[B]
def star[A,B](appF: App[A => B], appA: App[A]): App[B]
}
object ListApplicative extends Applicative[List] {
override def pure[A](a: A): List[A] = List(a)
override def fmap[A,B](f: A => B, listA: List[A]): List[B] = listA.map(f)
override def star[A,B](listF: List[A => B], listA: List[A]):List[B] =
for(f <- listF; a <- listA) yield f(a)
}
import ListApplicative._
def pairs[A,B](listA: List[A], listB: List[B]) =
star(fmap((a:A) => ((b:B) => (a,b)), listA), listB)
Other than that I would prefer pst's solution...
Here's one more that does the same thing as @ziggystar's last edit but doesn't use indexed access of lists.
def combinationIterator[A](xs: Iterable[Iterable[A]]): Iterator[List[A]] = {
xs.foldRight(Iterator(List[A]())) { (heads, tails) =>
tails.flatMap { tail =>
heads.map(head => head :: tail)
}
}
}
And the sugary version:
def combinationIterator[A](xs: Iterable[Iterable[A]]): Iterator[List[A]] = {
(xs :\ Iterator(List[A]())) { (heads, tails) =>
for (tail <- tails; head <- heads) yield head :: tail
}
}
精彩评论