Data Structure Differentiation, Intuition Building
According to this paper differentiation works on data structures.
According to this answer:
Differentiation, the derivative of a data type D (given as D') is the type of D-structures with a single “hole”, that is, a distinguished location not containing any data. That amazingly satisfy the same rules as for differentiation in calculus.
The rules are:
1 = 0
X′ = 1
(F + G)′ = F' + G′
(F • G)′ = F • G′ + F′ • G
开发者_JAVA技巧(F ◦ G)′ = (F′ ◦ G) • G′
The referenced paper is a bit too complex for me to get an intuition. What does this this mean in practice? A concrete example would be fantastic.
What's a one hole context for an X in an X? There's no choice: it's (-), representable by the unit type.
What's a one hole context for an X in an X*X? It's something like (-,x2) or (x1,-), so it's representable by X+X (or 2*X, if you like).
What's a one hole context for an X in an X*X*X? It's something like (-,x2,x3) or (x1,-,x3) or (x1,x2,-), representable by X*X + X*X + X*X, or (3*X^2, if you like).
More generally, an F*G with a hole is either an F with a hole and a G intact, or an F intact and a G with a hole.
Recursive datatypes are often defined as fixpoints of polynomials.
data Tree = Leaf | Node Tree Tree
is really saying Tree = 1 + Tree*Tree. Differentiating the polynomial tells you the contexts for immediate subtrees: no subtrees in a Leaf; in a Node, it's either hole on the left, tree on the right, or tree on the left, hole on the right.
data Tree' = NodeLeft () Tree | NodeRight Tree ()
That's the polynomial differentiated and rendered as a type. A context for a subtree in a tree is thus a list of those Tree' steps.
type TreeCtxt = [Tree']
type TreeZipper = (Tree, TreeCtxt)
Here, for example, is a function (untried code) which searches a tree for subtrees passing a given test subtree.
search :: (Tree -> Bool) -> Tree -> [TreeZipper]
search p t = go (t, []) where
go :: TreeZipper -> [TreeZipper]
go z = here z ++ below z
here :: TreeZipper -> [TreeZipper]
here z@(t, _) | p t = [z]
| otherwise = []
below (Leaf, _) = []
below (Node l r, cs) = go (l, NodeLeft () r : cs) ++ go (r, NodeRight l () : cs)
The role of "below" is to generate the inhabitants of Tree' relevant to the given Tree.
Differentiation of datatypes is a good way make programs like "search" generic.
My interpretation is that, the derivative (zipper) of T is the type of all instances that resembles the "shape" of T, but with exactly 1 element replaced by a "hole".
For instance, a list is
List t = 1 []
+ t [a]
+ t^2 [a,b]
+ t^3 [a,b,c]
+ t^4 [a,b,c,d]
+ ... [a,b,c,d,...]
if we replace any of those 'a', 'b', 'c' etc by a hole (represented as @
), we'll get
List' t = 0 empty list doesn't have hole
+ 1 [@]
+ 2*t [@,b] or [a,@]
+ 3*t^2 [@,b,c] or [a,@,c] or [a,b,@]
+ 4*t^3 [@,b,c,d] or [a,@,c,d] or [a,b,@,d] or [a,b,c,@]
+ ...
Another example, a binary tree is
data Tree t = TEmpty | TNode t (Tree t) (Tree t)
-- Tree t = 1 + t (Tree t)^2
so adding a hole generates the type:
{-
Tree' t = 0 empty tree doesn't have hole
+ (Tree X)^2 the root is a hole, followed by 2 normal trees
+ t*(Tree' t)*(Tree t) the left tree has a hole, the right is normal
+ t*(Tree t)*(Tree' t) the left tree is normal, the right has a hole
@ or x or x
/ \ / \ / \
a b @? b a @?
/\ /\ / \ /\ /\ /\
c d e f @? @? e f c d @? @?
-}
data Tree' t = THit (Tree t) (Tree t)
| TLeft t (Tree' t) (Tree t)
| TRight t (Tree t) (Tree' t)
A third example which illustrates the chain rule is the rose tree (variadic tree):
data Rose t = RNode t [Rose t]
-- R t = t*List(R t)
the derivative says R' t = List(R t) + t * List'(R t) * R' t
, which means
{-
R' t = List (R t) the root is a hole
+ t we have a normal root node,
* List' (R t) and a list that has a hole,
* R' t and we put a holed rose tree at the list's hole
x
|
[a,b,c,...,p,@?,r,...]
|
[@?,...]
-}
data Rose' t = RHit [Rose t] | RChild t (List' (Rose t)) (Rose' t)
Note that data List' t = LHit [t] | LTail t (List' t)
.
(These may be different from the conventional types where a zipper is a list of "directions", but they are isomorphic.)
The derivative is a systematic way to record how to encode a location in a structure, e.g. we can search with: (not quite optimized)
locateL :: (t -> Bool) -> [t] -> Maybe (t, List' t)
locateL _ [] = Nothing
locateL f (x:xs) | f x = Just (x, LHit xs)
| otherwise = do
(el, ctx) <- locateL f xs
return (el, LTail x ctx)
locateR :: (t -> Bool) -> Rose t -> Maybe (t, Rose' t)
locateR f (RNode a child)
| f a = Just (a, RHit child)
| otherwise = do
(whichChild, listCtx) <- locateL (isJust . locateR f) child
(el, ctx) <- locateR f whichChild
return (el, RChild a listCtx ctx)
and mutate (plug in the hole) using the context info:
updateL :: t -> List' t -> [t]
updateL x (LHit xs) = x:xs
updateL x (LTail a ctx) = a : updateL x ctx
updateR :: t -> Rose' t -> Rose t
updateR x (RHit child) = RNode x child
updateR x (RChild a listCtx ctx) = RNode a (updateL (updateR x ctx) listCtx)
精彩评论