FIND-S Algorithm - simple question
The FIND-S algorithm is probably one of the most simple machine learning algorithms. However, I can't find many examples out there.. Just the standard 'sunny, rainy, play-ball' examples that's always used in machine learning. Please could someone help me with this applica开发者_开发百科tion (its a past exam question in machine learning).
Hypotheses are of the form a <= x <= b
, c <= y <= d
where x
and y
are points in an x,y
plane and c
and d
are any integer. Basically, these hypotheses define rectangles in the x,y
space.
These are the training examples where -
is a negative example and +
is a positive example and the pairs are the x,y
co-ordinates:
+ 4, 4
+ 5, 3
+ 6, 5
- 1, 3
- 2, 6
- 5, 1
- 5, 8
- 9, 4
All I want to do is apply FIND-S to this example! It must be simple! Either some tips or a solution would be awesome.
Thank you.
Find-S seeks the most restrictive (ie most 'specific') hypothesis that fits all the positive examples (negatives are ignored).
In your case, there's an obvious graphical interpretation: "find the smallest rectangle that contains all the '+' coordinates"...
... which would be a=4, b=6, c=3, d=5.
The algorithm for doing it would be something like this:
Define a hypothesis rectangle h[a,b,c,d], and initialise it to [-,-,-,-]
for each + example e {
if e is not within h {
enlarge h to be just big enough to hold e (and all previous e's)
} else { do nothing: h already contains e }
}
If we step through this with your training set, we get:
0. h = [-,-,-,-] // initial value
1. h = [4,4,4,4] // (4,4) is not in h: change h so it just contains (4,4)
2. h = [4,5,3,4] // (5,3) is not in h, so enlarge h to fit (4,4) and (5,3)
3. h = [4,6,3,5] // (6,5) is not in h, so enlarge again
4. // no more positive examples left, so we're done.
精彩评论