How to generate a set of points that are equidistant from each other and lie on a circle
I am trying to generate an array of n points that are equidistant from each other and lie on a circle in C. Basically, I need to be able开发者_如何学运维 to pass a function the number of points that I would like to generate and get back an array of points.
It's been a really long time since I've done C/C++, so I've had a stab at this more to see how I got on with it, but here's some code that will calculate the points for you. (It's a VS2010 console application)
// CirclePoints.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include "stdio.h"
#include "math.h"
int _tmain()
{
int points = 8;
double radius = 100;
double step = ((3.14159265 * 2) / points);
double x, y, current = 0;
for (int i = 0; i < points; i++)
{
x = sin(current) * radius;
y = cos(current) * radius;
printf("point: %d x:%lf y:%lf\n", i, x, y);
current += step;
}
return 0;
}
Try something like this:
void make_circle(float *output, size_t num, float radius)
{
size_t i;
for(i = 0; i < num; i++)
{
const float angle = 2 * M_PI * i / num;
*output++ = radius * cos(angle);
*output++ = radius * sin(angle);
}
}
This is untested, there might be an off-by-one hiding in the angle step calculation but it should be close.
This assumes I understood the question correctly, of course.
UPDATE: Redid the angle computation to not be incrementing, to reduce float precision loss due to repeated addition.
Here's a solution, somewhat optimized, untested. Error can accumulate, but using double
rather than float
probably more than makes up for it except with extremely large values of n
.
void make_circle(double *dest, size_t n, double r)
{
double x0 = cos(2*M_PI/n), y0 = sin(2*M_PI/n), x=x0, y=y0, tmp;
for (;;) {
*dest++ = r*x;
*dest++ = r*y;
if (!--n) break;
tmp = x*x0 - y*y0;
y = x*y0 + y*x0;
x = tmp;
}
}
You have to solve this in c language:
In an x-y Cartesian coordinate system, the circle with centre coordinates (a, b) and radius r is the set of all points (x, y) such that
(x - a)^2 + (y - b)^2 = r^2
Here's a javascript implementation that also takes an optional center point.
function circlePoints (radius, numPoints, centerX, centerY) {
centerX = centerX || 0;
centerY = centerY || 0;
var
step = (Math.PI * 2) / numPoints,
current = 0,
i = 0,
results = [],
x, y;
for (; i < numPoints; i += 1) {
x = centerX + Math.sin(current) * radius;
y = centerY + Math.cos(current) * radius;
results.push([x,y]);
console.log('point %d @ x:%d, y:%d', i, x, y);
current += step;
}
return results;
}
精彩评论