Quadratic Bézier Curve: Calculate Points
I'd like to calculate a point on a quadratic curve. To use it with the canvas element of HTML5.
When I use the quadraticCurveTo()
function in JavaScript, I have a source point, a target point and a control point.
How can I calculate a point on the created quadratic开发者_C百科 curve at let's say t=0.5
with "only" knowing this three points?
Use the quadratic Bézier formula, found, for instance, on the Wikipedia page for Bézier Curves:
In pseudo-code, that's
t = 0.5; // given example value
x = (1 - t) * (1 - t) * p[0].x + 2 * (1 - t) * t * p[1].x + t * t * p[2].x;
y = (1 - t) * (1 - t) * p[0].y + 2 * (1 - t) * t * p[1].y + t * t * p[2].y;
p[0]
is the start point, p[1]
is the control point, and p[2]
is the end point. t
is the parameter, which goes from 0 to 1.
In case somebody needs the cubic form:
//B(t) = (1-t)**3 p0 + 3(1 - t)**2 t P1 + 3(1-t)t**2 P2 + t**3 P3
x = (1-t)*(1-t)*(1-t)*p0x + 3*(1-t)*(1-t)*t*p1x + 3*(1-t)*t*t*p2x + t*t*t*p3x;
y = (1-t)*(1-t)*(1-t)*p0y + 3*(1-t)*(1-t)*t*p1y + 3*(1-t)*t*t*p2y + t*t*t*p3y;
I created this demo :
// x = a * (1-t)³ + b * 3 * (1-t)²t + c * 3 * (1-t)t² + d * t³
//------------------------------------------------------------
// x = a - 3at + 3at² - at³
// + 3bt - 6bt² + 3bt³
// + 3ct² - 3ct³
// + dt³
//--------------------------------
// x = - at³ + 3bt³ - 3ct³ + dt³
// + 3at² - 6bt² + 3ct²
// - 3at + 3bt
// + a
//--------------------------------
// 0 = t³ (-a+3b-3c+d) + => A
// t² (3a-6b+3c) + => B
// t (-3a+3b) + => c
// a - x => D
//--------------------------------
var A = d - 3*c + 3*b - a,
B = 3*c - 6*b + 3*a,
C = 3*b - 3*a,
D = a-x;
// So we need to solve At³ + Bt² + Ct + D = 0
Full example here
may help someone.
I edited talkhabis answer (cubic curve) so the curve is displayed with the right coordinates. (Couldn't comment) The Y-coordinates needed to be changed (-p[].y+150). (A new variable for that might be a nicer and more efficient solution, but you get the idea)
// Apply points to SVG and create the curve and controllers :
var path = document.getElementById('path'),
ctrl1 = document.getElementById('ctrl1'),
ctrl2 = document.getElementById('ctrl2'),
D = 'M ' + p0.x + ' ' + (-p0.y+150) +
'C ' + c0.x + ' ' + (-c0.y+150) +', ' + c1.x + ' ' + (-c1.y+150) + ', ' + p1.x + ' ' + (-p1.y+150);
path.setAttribute('d',D);
ctrl1.setAttribute('d','M'+p0.x+','+(-p0.y+150)+'L'+c0.x+','+(-c0.y+150));
ctrl2.setAttribute('d','M'+p1.x+','+(-p1.y+150)+'L'+c1.x+','+(-c1.y+150));
// Lets test the "Bezier Function"
var t = 0, point = document.getElementById('point');
setInterval(function(){
var p = Bezier(p0,c0,c1,p1,t);
point.setAttribute('cx',p.x);
point.setAttribute('cy',-p.y+150);
t += 0.01;
if(t>=1) t=0;
},50);
// OK ... Now tring to get "y" on cruve based on mouse "x" :
var svg = document.getElementById('svg'),
point2 = document.getElementById('point2');
svg.onmousemove = function(e){
var x = (e.pageX - 50)/2,
y = (e.pageY - 50)/2;
// "-50" because of "50px margin" on the left side
// and "/2" because the svg width is 300 units and 600 px => 300 = 600/2
// Get the x,y by mouse x
var p = YBX(p0,c0,c1,p1,x);
point2.setAttribute('cx',p.x);
point2.setAttribute('cy',-p.y+150);
}
http://jsfiddle.net/u214gco8/1/
I also created some C-Code to test the results for the cubic curve. Just enter the X and Y coordinates in the main function.
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void bezierCurve(int x[] , int y[])
{
double xu = 0.0 , yu = 0.0 , u = 0.0 ;
int i = 0 ;
for(u = 0.0 ; u <= 1.0 ; u += 0.05)
{
xu = pow(1-u,3)*x[0]+3*u*pow(1-u,2)*x[1]+3*pow(u,2)*(1-u)*x[2]
+pow(u,3)*x[3];
yu = pow(1-u,3)*y[0]+3*u*pow(1-u,2)*y[1]+3*pow(u,2)*(1-u)*y[2]
+pow(u,3)*y[3];
printf("X: %i Y: %i \n" , (int)xu , (int)yu) ;
}
}
int main(void) {
int x[] = {0,75,50,300};
int y[] = {0,2,140,100};
bezierCurve(x,y);
return 0;
}
https://ideone.com/glLXcB
Just a note: If you are using the usual formulas presented here then don't expect t = 0.5 to return the point at half of the curve's length.. In most cases it won't.
More on this here under "§23 — Tracing a curve at fixed distance intervals" and here.
精彩评论