C++ Newbie needs helps for printing combinations of integers
Suppose I am given:
- A range of integers
iRange
(i.e. from1
up toiRange
) and - A desired number of combinations
I want to find the number of all possible combinations and print out all these combinations.
For example:
Given: iRange = 5
and n = 3
Then the number of combinations is iRange! / ((iRange!-n!)*n!) = 5! / (5-3)! * 3! = 10
combinations, and the output is:
123 - 124 - 125 - 134 - 135 - 145 - 234 - 235 - 245 - 345
Another example:
Given: iRange = 4
and n = 2
Then the number of combinations is iRange! / ((iRange!-n!)*n!) = 4! / (4-2)! * 2! = 6
combinations, and the output is:
12 - 13 - 14 - 23 - 24 - 34
My attempt so far is:
#include <iostream>
using namespace std;
int iRange= 0;
int iN=0;
int fact(int n)
{
if ( n<1)
return 1;
else
return fact(n-1)*n;
}
void print_combinations(int n, int iMxM)
{
int iBigSetFact=fact(iMxM);
int iDiffFact=fact(iMxM-n);
int iSmallSetFact=fact(n);
int iNoTotComb = (iBigSet开发者_如何转开发Fact/(iDiffFact*iSmallSetFact));
cout<<"The number of possible combinations is: "<<iNoTotComb<<endl;
cout<<" and these combinations are the following: "<<endl;
int i, j, k;
for (i = 0; i < iMxM - 1; i++)
{
for (j = i + 1; j < iMxM ; j++)
{
//for (k = j + 1; k < iMxM; k++)
cout<<i+1<<j+1<<endl;
}
}
}
int main()
{
cout<<"Please give the range (max) within which the combinations are to be found: "<<endl;
cin>>iRange;
cout<<"Please give the desired number of combinations: "<<endl;
cin>>iN;
print_combinations(iN,iRange);
return 0;
}
My problem:
The part of my code related to the printing of the combinations works only for n = 2, iRange = 4
and I can't make it work in general, i.e., for any n
and iRange
.
Your solution will only ever work for n=2. Think about using an array (combs) with n ints, then the loop will tick up the last item in the array. When that item reaches max update then comb[n-2] item and set the last item to the previous value +1.
Basically working like a clock but you need logic to find what to uptick and what the next minimum value is.
Looks like a good problem for recursion.
Define a function f(prefix, iMin, iMax, n)
, that prints all combinations of n
digits in the range [iMin
, iMax
] and returns the total number of combinations. For n
= 1, it should print every digit from iMin
to iMax
and return iMax - iMin + 1
.
For your iRange = 5
and n = 3
case, you call f("", 1, 5, 3)
. The output should be 123 - 124 - 125 - 134 - 135 - 145 - 234 - 235 - 245 - 345
.
Notice that the first group of outputs are simply 1
prefixed onto the outputs of f("", 2, 5, 2)
, i.e. f("1", 2, 5, 2)
, followed by f("2", 3, 5, 2)
and f("3", 4, 5, 2)
. See how you would do that with a loop. Between this, the case for n
= 1 above, and traps for bad inputs (best if they print nothing and return 0, it should simplify your loop), you should be able to write f()
.
I'm stopping short because this looks like a homework assignment. Is this enough to get you started?
EDIT: Just for giggles, I wrote a Python version. Python has an easier time throwing around sets and lists of things and staying legible.
#!/usr/bin/env python
def Combos(items, n):
if n <= 0 or len(items) == 0:
return []
if n == 1:
return [[x] for x in items]
result = []
for k in range(len(items) - n + 1):
for s in Combos(items[k+1:], n - 1):
result.append([items[k]] + s)
return result
comb = Combos([str(x) for x in range(1, 6)], 3)
print len(comb), " - ".join(["".join(c) for c in comb])
Note that Combos()
doesn't care about the types of the items in the items
list.
Here is your code edited :D :D with a recursive solution:
#include <iostream>
int iRange=0;
int iN=0; //Number of items taken from iRange, for which u want to print out the combinations
int iTotalCombs=0;
int* pTheRange;
int* pTempRange;
int find_factorial(int n)
{
if ( n<1)
return 1;
else
return find_factorial(n-1)*n;
}
//--->Here is another solution:
void print_out_combinations(int *P, int K, int n_i)
{
if (K == 0)
{
for (int j =iN;j>0;j--)
std::cout<<P[j]<<" ";
std::cout<<std::endl;
}
else
for (int i = n_i; i < iRange; i++)
{
P[K] = pTheRange[i];
print_out_combinations(P, K-1, i+1);
}
}
//Here ends the solution...
int main()
{
std::cout<<"Give the set of items -iRange- = ";
std::cin>>iRange;
std::cout<<"Give the items # -iN- of iRange for which the combinations will be created = ";
std::cin>>iN;
pTheRange = new int[iRange];
for (int i = 0;i<iRange;i++)
{
pTheRange[i]=i+1;
}
pTempRange = new int[iN];
iTotalCombs = (find_factorial(iRange)/(find_factorial(iRange-iN)*find_factorial(iN)));
std::cout<<"The number of possible combinations is: "<<iTotalCombs<<std::endl;
std::cout<<"i.e.the combinations of "<<iN<<" elements drawn from a set of size "<<iRange<<" are: "<<std::endl;
print_out_combinations(pTempRange, iN, 0);
return 0;
}
Here's an example of a plain recursive solution. I believe there exists a more optimal implementation if you replace recursion with cycles. It could be your homework :)
#include <stdio.h>
const int iRange = 9;
const int n = 4;
// A more efficient way to calculate binomial coefficient, in my opinion
int Cnm(int n, int m)
{
int i;
int result = 1;
for (i = m + 1; i <= n; ++i)
result *= i;
for (i = n - m; i > 1; --i)
result /= i;
return result;
}
print_digits(int *digits)
{
int i;
for (i = 0; i < n; ++i) {
printf("%d", digits[i]);
}
printf("\n");
}
void plus_one(int *digits, int index)
{
int i;
// Increment current digit
++digits[index];
// If it is the leftmost digit, run to the right, setup all the others
if (index == 0) {
for (i = 1; i < n; ++i)
digits[i] = digits[i-1] + 1;
}
// step back by one digit recursively
else if (digits[index] > iRange) {
plus_one(digits, index - 1);
}
// otherwise run to the right, setting up other digits, and break the recursion once a digit exceeds iRange
else {
for (i = index + 1; i < n; ++i) {
digits[i] = digits[i-1] + 1;
if (digits[i] > iRange) {
plus_one(digits, i - 1);
break;
}
}
}
}
int main()
{
int i;
int digits[n];
for (i = 0; i < n; ++i) {
digits[i] = i + 1;
}
printf("%d\n\n", Cnm(iRange, n));
// *** This loop has been updated ***
while (digits[0] <= iRange - n + 1) {
print_digits(digits);
plus_one(digits, n - 1);
}
return 0;
}
This is my C++ function with different interface (based on sts::set) but performing the same task:
typedef std::set<int> NumbersSet;
typedef std::set<NumbersSet> CombinationsSet;
CombinationsSet MakeCombinations(const NumbersSet& numbers, int count)
{
CombinationsSet result;
if (!count) throw std::exception();
if (count == numbers.size())
{
result.insert(NumbersSet(numbers.begin(), numbers.end()));
return result;
}
// combinations with 1 element
if (!(count - 1) || (numbers.size() <= 1))
{
for (auto number = numbers.begin(); number != numbers.end(); ++number)
{
NumbersSet single_combination;
single_combination.insert(*number);
result.insert(single_combination);
}
return result;
}
// Combinations with (count - 1) without current number
int first_num = *numbers.begin();
NumbersSet truncated_numbers = numbers;
truncated_numbers.erase(first_num);
CombinationsSet subcombinations = MakeCombinations(truncated_numbers, count - 1);
for (auto subcombination = subcombinations.begin(); subcombination != subcombinations.end(); ++subcombination)
{
NumbersSet cmb = *subcombination;
// Add current number
cmb.insert(first_num);
result.insert(cmb);
}
// Combinations with (count) without current number
subcombinations = MakeCombinations(truncated_numbers, count);
result.insert(subcombinations.begin(), subcombinations.end());
return result;
}
I created a next_combination()
function similar to next_permutation()
, but valid input is required to make it work
//nums should always be in ascending order
vector <int> next_combination(vector<int>nums, int max){
int size = nums.size();
if(nums[size-1]+1<=max){
nums[size-1]++;
return nums;
}else{
if(nums[0] == max - (size -1)){
nums[0] = -1;
return nums;
}
int pos;
int negate = -1;
for(int i = size-2; i>=0; i--){
if(nums[i]+1 <= max + negate){
pos = i;
break;
}
negate --;
}
nums[pos]++;
pos++;
while(pos<size){
nums[pos] = nums[pos-1]+1;
pos++;
}
}
return nums;
}
精彩评论