开发者

Calculate scores across columns

First the sample data:

bbbv[1:25] <-1
bbbv[26:开发者_高级运维50] <-2
bbbw <- 1:25
bbbx <- sample(1:5, 50, replace=TRUE)
bbby <- sample(1:5, 50, replace=TRUE)

bbb <- data.frame(pnum=bbbv, trialnum=bbbw, guess=bbbx, target=bbby)

If the target is the same number as the guess then we score 1, else 0.

bbb$hit <- ifelse(bbb$guess==bbb$target, 1, 0)

Calculate scores across columns

This is the problem. I want to calculate four more columns:

bbb$hitpone trialnum(n) guess == trial(n+1) target
bbb$hitptwo trialnum(n) guess == trial(n+2) target
bbb$hitmone trialnum(n) guess == trial(n-1) target
bbb$hitmtwo trialnum(n) guess == trial(n-2) target

To be clear. For hitmone we look at the trial guess and compare it to the target for the trial before (-1 from the current trial). For hitmtwo we look at the trial guess and compare it to the target 2 back (-2 from the current trial). hitpone and hitptwo are the same but in a positive direction (+1 and +2 from current trial).

And just to be clear, as before we're interested in determining If the target is the same number as the guess then we score 1, else 0 (according to our new calculations).

Now there is some minor difficulty with this task. Each pnum has 25 trials. For hitpone we cannot calculate a +1 for trial 25. For hitptwo we cannot calculate a +2 for trials 25 nor trial 24. The same follows for the hitmone: we cannot calculate -1 for trial 1, nor -2 for trials 1 and 2.

This is how I want the table to look. I have mocked it up by hand, showing the first 1-3 trials and last 23-25 trials.

Calculate scores across columns

dput(bbb)
structure(list(pnum = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), trialnum = c(1L, 
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 1L, 2L, 3L, 
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 
18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L), guess = c(5L, 1L, 1L, 
3L, 1L, 3L, 1L, 5L, 2L, 3L, 1L, 1L, 5L, 3L, 5L, 1L, 2L, 2L, 3L, 
1L, 4L, 1L, 4L, 4L, 3L, 4L, 5L, 2L, 4L, 5L, 5L, 5L, 4L, 5L, 2L, 
3L, 1L, 1L, 5L, 1L, 1L, 3L, 1L, 2L, 4L, 1L, 2L, 3L, 1L, 1L), 
target = c(4L, 3L, 4L, 5L, 5L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 
1L, 2L, 5L, 1L, 3L, 2L, 1L, 4L, 4L, 1L, 1L, 3L, 4L, 4L, 2L, 
3L, 2L, 1L, 1L, 5L, 4L, 3L, 5L, 1L, 1L, 1L, 2L, 5L, 2L, 4L, 
3L, 1L, 1L, 2L, 5L, 3L, 3L, 3L), hit = c(0, 0, 0, 0, 0, 0, 
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 
1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 1, 0, 0)), .Names = c("pnum", "trialnum", "guess", 
"target", "hit"), row.names = c(NA, -50L), class = "data.frame")


Here are the basics. You can extend this out to handle negative increments and use by() to wrap a call to hitp() to avoid subsetting.

hitp <- function(dtf,inc) {
    target.shift <- shift(dtf$target,inc,wrap=FALSE,pad=TRUE)
    return(dtf$guess==target.shift)
}
bbb1 <- subset(bbb,pnum==1)
bbb1$hitpone <- hitp(bbb1,1)
bbb1$hitptwo <- hitp(bbb1,2)
bbb1$hitmone <- hitp(bbb1,-1)

Call to by would look something like this:

unlist(by(bbb,bbb$pnum,hitp,inc=1))

Where shift is a program I wrote for another purpose:

shift <- function(vec,n=1,wrap=TRUE,pad=FALSE) {
    if(length(vec)<abs(n)) { 
        #stop("Length of vector must be greater than the magnitude of n \n") 
    }
    if(n==0) { 
        return(vec) 
    } else if(length(vec)==n) { 
        # return empty
        length(vec) <- 0
        return(vec)
    } else if(n>0) {
        returnvec <- vec[seq(n+1,length(vec) )]
        if(wrap) {
            returnvec <- c(returnvec,vec[seq(n)])
        } else if(pad) {
            returnvec <- c(returnvec,rep(NA,n))
        }
    } else if(n<0) {
        returnvec <- vec[seq(1,length(vec)-abs(n))]
        if(wrap) {
            returnvec <- c( vec[seq(length(vec)-abs(n)+1,length(vec))], returnvec )
        } else if(pad) {
            returnvec <- c( rep(NA,abs(n)), returnvec )
        }

    }
    return(returnvec)
}

This all relies pretty heavily on proper sorting, so make sure it's sorted before you run.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜