How to know that a triangle triple exists in our array?
I was stuck in solving the following interview practice question:
I have to write a function:int triangle(int[] A);
that given a zero-indexed array A consisting of N
integers returns 1
if there exists a triple (P, Q, R) such that 0 < P < Q < R < N
.
A[P] + A[Q] > A[R],
A[Q] + A[R] > A[P],
A[R] + A[P] > A[Q].
The function should return 0
if such triple does not exist. Assume that 0 < N < 100,000
. Assume that each element of the array is an integer in range [-1,000,000..1,000,000]
.
For example, given array A
such that
A[0]=10, A[1]=2, A[2]=5, A[3]=1, A[4]=8, A[5]=20
the function should return 1
, becau开发者_StackOverflow社区se the triple (0, 2, 4)
fulfills all of the required conditions.
For array A
such that
A[0]=10, A[1]=50, A[2]=5, A[3]=1
the function should return 0
.
If I do a triple loop, this would be very very slow (complexity: O(n^3)
). I am thinking maybe to use to store an extra copy of the array and sort it, and use a binary search for a particular number. But I don't know how to break down this problem.
First of all, you can sort your sequence. For the sorted sequence it's enough to check that A[i] + A[j] > A[k]
for i < j < k
, because A[i] + A[k] > A[k] > A[j]
etc., so the other 2 inequalities are automatically true.
(From now on, i < j < k
.)
Next, it's enough to check that A[i] + A[j] > A[j+1]
, because other A[k]
are even bigger (so if the inequality holds for some k
, it holds for k = j + 1
as well).
Next, it's enough to check that A[j-1] + A[j] > A[j+1]
, because other A[i]
are even smaller (so if inequality holds for some i
, it holds for i = j - 1
as well).
So, you have just a linear check: you need to check whether for at least one j
A[j-1] + A[j] > A[j+1]
holds true.
Altogether O(N log N) {sorting} + O(N) {check} = O(N log N)
.
Addressing the comment about negative numbers: indeed, this is what I didn't consider in the original solution. Considering the negative numbers doesn't change the solution much, since no negative number can be a part of triangle triple. Indeed, if A[i]
, A[j]
and A[k]
form a triangle triple, then A[i] + A[j] > A[k]
, A[i] + A[k] > A[j]
, which implies 2 * A[i] + A[j] + A[k] > A[k] + A[j]
, hence 2 * A[i] > 0
, so A[i] > 0
and by symmetry A[j] > 0
, A[k] > 0
.
This means that we can safely remove negative numbers and zeroes from the sequence, which is done in O(log n)
after sorting.
In Java:
public int triangle2(int[] A) {
if (null == A)
return 0;
if (A.length < 3)
return 0;
Arrays.sort(A);
for (int i = 0; i < A.length - 2 && A[i] > 0; i++) {
if (A[i] + A[i + 1] > A[i + 2])
return 1;
}
return 0;
}
Here is an implementation of the algorithm proposed by Vlad. The question now requires to avoid overflows, therefore the casts to long long
.
#include <algorithm>
#include <vector>
int solution(vector<int>& A) {
if (A.size() < 3u) return 0;
sort(A.begin(), A.end());
for (size_t i = 2; i < A.size(); i++) {
const long long sum = (long long) A[i - 2] + (long long) A[i - 1];
if (sum > A[i]) return 1;
}
return 0;
}
Here's simple solution in java with 100/100 score
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
Arrays.sort(A);
for (int i = 0; i < A.length - 2; ++i) {
long a = A[i] + (long) A[i + 1];
long b = A[i + 2];
if (a > b) {
return 1;
}
}
return 0;
}
}
Do a quick sort first, this will generally take nlogn. And you can omit the third loop by binary search, which can take log(n). So altogether, the complexity is reduced to n^2log(n).
In ruby what about
def check_triangle (_array)
for p in 0 .. _array.length-1
for q in p .. _array.length-1
for r in q .. _array.length-1
return true if _array[p] + _array[q] > _array[r] && _array[p] + _array[r] > _array[q] && _array[r] + _array[q] > _array[p]
end
end
end
return false
end
Just port it in the language of your choice
A 100/100 php solution: http://www.rationalplanet.com/php-related/maxproductofthree-demo-task-at-codility-com.html
function solution($A) {
$cnt = count($A);
sort($A, SORT_NUMERIC);
return max($A[0]*$A[1]*$A[$cnt-1], $A[$cnt-1]*$A[$cnt-2]*$A[$cnt-3]);
}
Python:
def solution(A):
A.sort()
for i in range(0,len(A)-2):
if A[i]+A[i+1]>A[i+2]:
return 1
return 0
Sorting: Loglinear complexity O(N log N)
I have got another solution to count triangles. Its time complexity is O(N**3) and takes long time to process long arrays.
Private Function solution(A As Integer()) As Integer
' write your code in VB.NET 4.0
Dim result, size, i, j, k As Integer
size = A.Length
Array.Sort(A)
For i = 0 To Size - 3
j = i + 1
While j < size
k = j + 1
While k < size
If A(i) + A(j) > A(k) Then
result += 1
End If
k += 1
End While
j += 1
End While
Next
Return result
End Function
PHP Solution :
function solution($x){
sort($x);
if (count($x) < 3) return 0;
for($i = 2; $i < count($x); $i++){
if($x[$i] < $x[$i-1] + $x[$i-2]){
return 1;
}
}
return 0;
}
Reversing the loop from Vlad solution for me seems to be easier to understand.
The equation A[j-1] + A[j] > A[j+1] could be changed to A[k-2]+A[k-1]>A[k]. Explained in words, the sum of the last two largest numbers should be bigger than current largest value being checked (A[k]). If the result of adding the last two largest numbers(A[k-2] and A[k-1]) is not bigger than A[k], we can go to the next iteration of the loop.
In addition, we can add the check for negative numbers that Vlad mentioned, and stop the loop earlier.
int solution(vector<int> &A) {
sort(A.begin(),A.end());
for (int k = A.size()-1; k >= 2 && A[k-2] > 0 ; --k) {
if ( A[k-2]+A[k-1] > A[k] )
return 1;
}
return 0;
}
Here's my solution in C#, which gets 90% correctness (the wrong answer is returned for test extreme_arith_overflow1 -overflow test, 3 MAXINTs-
) and 100% performance.
private struct Pair
{
public int Value;
public int OriginalIndex;
}
private static bool IsTriplet(Pair a, Pair b, Pair c)
{
if (a.OriginalIndex < b.OriginalIndex && b.OriginalIndex < c.OriginalIndex)
{
return ((long)(a.Value + b.Value) > c.Value
&& (long)(b.Value + c.Value) > a.Value
&& (long)(c.Value + a.Value) > b.Value);
}
else if (b.OriginalIndex < c.OriginalIndex && c.OriginalIndex < a.OriginalIndex)
{
return ((long)(b.Value + c.Value) > a.Value
&&(long)(c.Value + a.Value) > b.Value
&& (long)(a.Value + b.Value) > c.Value);
}
// c.OriginalIndex < a.OriginalIndex && a.OriginalIndex < b.OriginalIndex
return ((long)(c.Value + a.Value) > b.Value
&& (long)(a.Value + b.Value) > c.Value
&& (long)(b.Value + c.Value) > a.Value);
}
public static int Triplets(int[] A)
{
const int IS_TRIPLET = 1;
const int IS_NOT_TRIPLET = 0;
Pair[] copy = new Pair[A.Length];
// O (N)
for (var i = 0; i < copy.Length; i++)
{
copy[i].Value = A[i];
copy[i].OriginalIndex = i;
}
// O (N log N)
Array.Sort(copy, (a, b) => a.Value > b.Value ? 1 : (a.Value == b.Value) ? 0 : -1);
// O (N)
for (var i = 0; i < copy.Length - 2; i++)
{
if (IsTriplet(copy[i], copy[i + 1], copy[i + 2]))
{
return IS_TRIPLET;
}
}
return IS_NOT_TRIPLET;
}
public static int solution(int[] A) {
// write your code in Java SE 8
long p, q, r;
int isTriangle = 0;
Arrays.sort(A);
for (int i = 0; i < A.length; i += 1) {
if (i + 2 < A.length) {
p = A[i];
q = A[i + 1];
r = A[i + 2];
if (p >= 0) {
if (Math.abs(p) + Math.abs(q) > Math.abs(r) && Math.abs(q) + Math.abs(r) > Math.abs(p) && Math.abs(r) + Math.abs(p) > Math.abs(q))
return 1;
}
} else return 0;
}
return isTriangle;
}
The above implementation is Linear in time complexity. The concept is simple use the formaula they gave extracting a series of triplets of sorted elements.
精彩评论