Why do people still use primitive types in Java?
Since Java 5, we've had boxing/unboxing of primitive types so that int
is wra开发者_运维知识库pped to be java.lang.Integer
, and so and and so forth.
I see a lot of new Java projects lately (that definitely require a JRE of at least version 5, if not 6) that are using int
rather than java.lang.Integer
, though it's much more convenient to use the latter, as it has a few helper methods for converting to long
values et al.
Why do some still use primitive types in Java? Is there any tangible benefit?
In Joshua Bloch's Effective Java, Item 5: "Avoid creating unnecessary objects", he posts the following code example:
public static void main(String[] args) {
Long sum = 0L; // uses Long, not long
for (long i = 0; i <= Integer.MAX_VALUE; i++) {
sum += i;
}
System.out.println(sum);
}
and it takes 43 seconds to run. Taking the Long into the primitive brings it down to 6.8 seconds... If that's any indication why we use primitives.
The lack of native value equality is also a concern (.equals()
is fairly verbose compared to ==
)
for biziclop:
class Biziclop {
public static void main(String[] args) {
System.out.println(new Integer(5) == new Integer(5));
System.out.println(new Integer(500) == new Integer(500));
System.out.println(Integer.valueOf(5) == Integer.valueOf(5));
System.out.println(Integer.valueOf(500) == Integer.valueOf(500));
}
}
Results in:
false
false
true
false
EDIT Why does (3) return true
and (4) return false
?
Because they are two different objects. The 256 integers closest to zero [-128; 127] are cached by the JVM, so they return the same object for those. Beyond that range, though, they aren't cached, so a new object is created. To make things more complicated, the JLS demands that at least 256 flyweights be cached. JVM implementers may add more if they desire, meaning this could run on a system where the nearest 1024 are cached and all of them return true... #awkward
Autounboxing can lead to hard to spot NPEs
Integer in = null;
...
...
int i = in; // NPE at runtime
In most situations the null assignment to in
is a lot less obvious than above.
Boxed types have poorer performance and require more memory.
Primitive types:
int x = 1000;
int y = 1000;
Now evaluate:
x == y
It's true
. Hardly surprising. Now try the boxed types:
Integer x = 1000;
Integer y = 1000;
Now evaluate:
x == y
It's false
. Probably. Depends on the runtime. Is that reason enough?
Besides performance and memory issues, I'd like to come up with another issue: The List
interface would be broken without int
.
The problem is the overloaded remove()
method (remove(int)
vs. remove(Object)
). remove(Integer)
would always resolve to calling the latter, so you could not remove an element by index.
On the other hand, there is a pitfall when trying to add and remove an int
:
final int i = 42;
final List<Integer> list = new ArrayList<Integer>();
list.add(i); // add(Object)
list.remove(i); // remove(int) - Ouch!
Can you really imagine a
for (int i=0; i<10000; i++) {
do something
}
loop with java.lang.Integer instead? A java.lang.Integer is immutable, so each increment round the loop would create a new java object on the heap, rather than just increment the int on the stack with a single JVM instruction. The performance would be diabolical.
I would really disagree that it's much mode convenient to use java.lang.Integer than int. On the contrary. Autoboxing means that you can use int where you would otherwise be forced to use Integer, and the java compiler takes care of inserting the code to create the new Integer object for you. Autoboxing is all about allowing you to use an int where an Integer is expected, with the compiler inserting the relevant object construction. It in no way removes or reduces the need for the int in the first place. With autoboxing you get the best of both worlds. You get an Integer created for you automatically when you need a heap based java object, and you get the speed and efficiency of an int when you are just doing arithmetic and local calculations.
Primitive types are much faster:
int i;
i++;
Integer (all Numbers and also a String) is an immutable type: once created it can not be changed. If i
was Integer, than i++
would create a new Integer object - much more expensive in terms of memory and processor.
First and foremost, habit. If you've coded in Java for eight years, you accumulate a considerable amount of inertia. Why change if there is no compelling reason to do so? It's not as if using boxed primitives comes with any extra advantages.
The other reason is to assert that null
is not a valid option. It would be pointless and misleading to declare the sum of two numbers or a loop variable as Integer
.
There's the performance aspect of it too, while the performance difference isn't critical in many cases (though when it is, it's pretty bad), nobody likes to write code that could be written just as easily in a faster way we're already used to.
By the way, Smalltalk has only objects (no primitives), and yet they had optimized their small integers (using not all 32 bits, only 27 or such) to not allocate any heap space, but simply use a special bit pattern. Also other common objects (true, false, null) had special bit patterns here.
So, at least on 64-bit JVMs (with a 64 bit pointer namespace) it should be possible to not have any objects of Integer, Character, Byte, Short, Boolean, Float (and small Long) at all (apart from these created by explicit new ...()
), only special bit patterns, which could be manipulated by the normal operators quite efficiently.
I can't believe no one has mentioned what I think is the most important reason: "int" is so, so much easier to type than "Integer". I think people underestimate the importance of a concise syntax. Performance isn't really a reason to avoid them because most of the time when one is using numbers is in loop indexes, and incrementing and comparing those costs nothing in any non-trivial loop (whether you're using int or Integer).
The other given reason was that you can get NPEs but that's extremely easy to avoid with boxed types (and it is guaranteed to be avoided as long as you always initialize them to non-null values).
The other reason was that (new Long(1000))==(new Long(1000)) is false, but that's just another way of saying that ".equals" has no syntactic support for boxed types (unlike the operators <, >, =, etc), so we come back to the "simpler syntax" reason.
I think Steve Yegge's non-primitive loop example illustrates my point very well: http://sites.google.com/site/steveyegge2/language-trickery-and-ejb
Think about this: how often do you use function types in languages that have good syntax for them (like any functional language, python, ruby, and even C) compared to java where you have to simulate them using interfaces such as Runnable and Callable and nameless classes.
Couple of reasons not to get rid of primitives:
- Backwards compatability.
If it's eliminated, any old programs wouldn't even run.
- JVM rewrite.
The entire JVM would have to be rewritten to support this new thing.
- Larger memory footprint.
You'd need to store the value and the reference, which uses more memory. If you have a huge array of bytes, using byte
's is significantly smaller than using Byte
's.
- Null pointer issues.
Declaring int i
then doing stuff with i
would result in no issues, but declaring Integer i
and then doing the same would result in an NPE.
- Equality issues.
Consider this code:
Integer i1 = 5;
Integer i2 = 5;
i1 == i2; // Currently would be false.
Would be false. Operators would have to be overloaded, and that would result in a major rewrite of stuff.
- Slow
Object wrappers are significantly slower than their primitive counterparts.
Objects are much more heavyweight than primitive types, so primitive types are much more efficient than instances of wrapper classes.
Primitive types are very simple: for example an int is 32 bits and takes up exactly 32 bits in memory, and can be manipulated directly. An Integer object is a complete object, which (like any object) has to be stored on the heap, and can only be accessed via a reference (pointer) to it. It most likely also takes up more than 32 bits (4 bytes) of memory.
That said, the fact that Java has a distinction between primitive and non-primitive types is also a sign of age of the Java programming language. Newer programming languages don't have this distinction; the compiler of such a language is smart enough to figure out by itself if you're using simple values or more complex objects.
For example, in Scala there are no primitive types; there is a class Int for integers, and an Int is a real object (that you can methods on etc.). When the compiler compiles your code, it uses primitive ints behind the scenes, so using an Int is just as efficient as using a primitive int in Java.
In addition to what others have said, primitive local variables are not allocated from the heap, but instead on the stack. But objects are allocated from the heap and thus have to be garbage collected.
It's hard to know what kind of optimizations are going on under the covers.
For local use, when the compiler has enough information to make optimizations excluding the possibility of the null value, I expect the performance to be the same or similar.
However, arrays of primitives are apparently very different from collections of boxed primitives. This makes sense given that very few optimizations are possible deep within a collection.
Furthermore, Integer
has a much higher logical overhead as compared with int
: now you have to worry about about whether or not int a = b + c;
throws an exception.
I'd use the primitives as much as possible and rely on the factory methods and autoboxing to give me the more semantically powerful boxed types when they are needed.
int loops = 100000000;
long start = System.currentTimeMillis();
for (Long l = new Long(0); l<loops;l++) {
//System.out.println("Long: "+l);
}
System.out.println("Milliseconds taken to loop '"+loops+"' times around Long: "+ (System.currentTimeMillis()- start));
start = System.currentTimeMillis();
for (long l = 0; l<loops;l++) {
//System.out.println("long: "+l);
}
System.out.println("Milliseconds taken to loop '"+loops+"' times around long: "+ (System.currentTimeMillis()- start));
Milliseconds taken to loop '100000000' times around Long: 468
Milliseconds taken to loop '100000000' times around long: 31
On a side note, I wouldn't mind seeing something like this find it's way into Java.
Integer loop1 = new Integer(0);
for (loop1.lessThan(1000)) {
...
}
Where the for loop automatically increments loop1 from 0 to 1000 or
Integer loop1 = new Integer(1000);
for (loop1.greaterThan(0)) {
...
}
Where the for loop automatically decrements loop1 1000 to 0.
Primitive types have many advantages:
- Simpler code to write
- Performance is better since you are not instantiating an object for the variable
- Since they do not represent a reference to an object there is no need to check for nulls
- Use primitive types unless you need to take advantage of the boxing features.
- You need primitives for doing mathematical operations
- Primitives takes less memory as answered above and better performing
You should ask why Class/Object type is required
Reason for having Object type is to make our life easier when we deal with Collections. Primitives cannot be added directly to List/Map rather you need to write a wrapper class. Readymade Integer kind of Classes helps you here plus it has many utility methods like Integer.pareseInt(str)
I agree with previous answers, using primitives wrapper objects can be expensive. But, if performance is not critical in your application, you avoid overflows when using objects. For example:
long bigNumber = Integer.MAX_VALUE + 2;
The value of bigNumber
is -2147483647, and you would expect it to be 2147483649. It's a bug in the code that would be fixed by doing:
long bigNumber = Integer.MAX_VALUE + 2l; // note that '2' is a long now (it is '2L').
And bigNumber
would be 2147483649. These kind of bugs sometimes are easy to be missed and can lead to unknown behavior or vulnerabilities (see CWE-190).
If you use wrapper objects, the equivalent code won't compile.
Long bigNumber = Integer.MAX_VALUE + 2; // Not compiling
So it's easier to stop these kind of issues by using primitives wrapper objects.
Your question is so answered already, that I reply just to add a little bit more information not mentioned before.
Because JAVA performs all mathematical operations in primitive types. Consider this example:
public static int sumEven(List<Integer> li) {
int sum = 0;
for (Integer i: li)
if (i % 2 == 0)
sum += i;
return sum;
}
Here, reminder and unary plus operations can not be applied on Integer(Reference) type, compiler performs unboxing and do the operations.
So, make sure how many autoboxing and unboxing operations happen in java program. Since, It takes time to perform this operations.
Generally, it is better to keep arguments of type Reference and result of primitive type.
The primitive types are much faster and require much less memory. Therefore, we might want to prefer using them.
On the other hand, current Java language specification doesn’t allow usage of primitive types in the parameterized types (generics), in the Java collections or the Reflection API.
When our application needs collections with a big number of elements, we should consider using arrays with as more “economical” type as possible.
*For detailed info see the source: https://www.baeldung.com/java-primitives-vs-objects
To be brief: primitive types are faster and require less memory than boxed ones
精彩评论