C++ - Overload templated class method with a partial specilization of that method
There are a few questions already similar to this already on stack overflow, but nothing that seemd to directly answer the question I have. I do apologise if I am reposting.
I'd like to overload a few methods of a templated class (with 2 template parameters) with a partial template specialisation of those methods. I haven't been able to figure out the correct syntax, and am starting to think that it's not possible. I thought I'd post here to see if I can get confirmation.
Example code to follow:
template <typename T, typename U>
class Test
{
public:
void Set( T t, U u );
T m_T;
U m_U;
};
// Fully templated method that should be used most of the time
template <typename T, typename U>
inline void Test<T,U>::Set( T t, U u )
{
m_T=t;
m_U=u;
}
// Partial specialisation that should only be used when U is a flo开发者_如何学编程at.
// This generates compile errors
template <typename T>
inline void Test<T,float>::Set( T t, float u )
{
m_T=t;
m_U=u+0.5f;
}
int _tmain(int argc, _TCHAR* argv[])
{
Test<int, int> testOne;
int a = 1;
testOne.Set( a, a );
Test<int, float> testTwo;
float f = 1.f;
testTwo.Set( a, f );
}
I know that I could write a partial specialisation of the entire class, but that kinda sucks. Is something like this possible?
(I'm using VS2008) Edit: Here is the compile error error C2244: 'Test::Set' : unable to match function definition to an existing declaration
Thanks :)
You cannot partially specialize a member function without defining partial specialization of the class template itself. Note that partial specialization of a template is STILL a template, hence when the compiler sees Test<T, float>
, it expects a partial specialization of the class template.
--
$14.5.4.3/1 from the C++ Standard (2003) says,
The template parameter list of a member of a class template partial specialization shall match the template parameter list of the class template partial specialization. The template argument list of a member of a class template partial specialization shall match the template argument list of the class template partial specialization. A class template specialization is a distinct template. The members of the class template partial specialization are unrelated to the members of the primary template. Class template partial specialization members that are used in a way that requires a definition shall be defined; the definitions of members of the primary template are never used as definitions for members of a class template partial specialization. An explicit specialization of a member of a class template partial specialization is declared in the same way as an explicit specialization of the primary template.
Then the Standard itself gives this example,
// primary template
template<class T, int I> struct A {
void f();
};
template<class T, int I> void A<T,I>::f() { }
// class template partial specialization
template<class T> struct A<T,2> {
void f();
void g();
void h();
};
// member of class template partial specialization
template<class T> void A<T,2>::g() { }
I hope the quotation from the Standard along with the example answers your question well.
The particular problem you're sketching is easy:
template< class T >
inline T foo( T const& v ) { return v; }
template<>
float foo( float const& v ) { return v+0.5; }
Then call foo
from your Test::Set
implementation.
If you want the full generality, then similarly use a helper class with static helper member functions, and partially specialize that helper class.
Cheers & hth.,
There's also another solution to the partial specialization problem, if you don't want to introduce additional functions, methods or classes to your code.
#include <type_traits>
template <typename T1, typename T2>
class C
{
void f(T1 t1);
}
template <typename T1, typename T2>
void C<T1, T2>::f(T1 t1)
{
if (std::is_same<T2, float>::value)
// Do sth
else
// Do sth
}
精彩评论