Looking for a tool that would tell me which integer-widths I need for a calculation in C to not overflow [closed]
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 8 years ago.
开发者_Python百科 Improve this questionI have a lengthy calculation (polynomial of 4th degree with fixed decimals) that I have to carry out on a microcontroller (TI/LuminaryMicro lm3s9l97 [CortexM3] if somebody is interested).
When I use 32bit-Integers, some calculations flow over. When I use 64bit Integers the compiler emits an ungodly amount of code to simulate 64bit-multiplication on the 32bit-processor.
I am looking for a program into which I could input (just for example):
int a, b, c;
c = a * b; // Do the multiplication
c >>= 10; // Correct for fixed decimal point
c *= a*b;
where I could specify, that a and b would be in the range of [15000..30000] [40000..100000] respectively and it would tell me what sizes the integers need to not overflow (and/or underflow; I would possibly get a false positive there for the >> 10) in the specified domain, so that I could use 32bit-integers where possible.
Does something like this exists already or do I have to roll my own?
Thanks!
I think you have to roll your own. Implementing an extended sequence of muls and divs in fixed-point can be tricky. If fixed-point is applied without careful thought, overflow can happen quite easily. When implementing such a formula, I use a spreadsheet to experiment with the following:
Ordering of operations: muls require twice the number of bits on the left-hand side, i.e. multiplying two 22.10 numbers can yield a 44-bit result. Div operations reduce the number needed on the LHS. Strategically re-ordering the equation's evaluation, or even rewriting it (expanding, factoring, etc) can provide opportunities to improve precision.
Pre-computed scalars: along the same lines, pre-computing values may help. These scalars may not be need to be constant, since look-up tables may be used to store a collection of pre-computed values.
Loss of precision: is 10-bits of precision really needed at steps in the evaluation of the equation? Perhaps some steps need lower precision, leaving more bits on the LHS to avoid overflow.
Given these concerns (all of which are application-specific), optimal use of fixed-point math remains very much a manual exercise. There are good resources on the web. I've found this one useful on occasion.
Ada might be able to do that using range types.
精彩评论