Draw Histogram of a colored Image with Opencv [closed]
Want to improve this question? Update the question so开发者_如何转开发 it focuses on one problem only by editing this post.
Closed 1 year ago.
The community reviewed whether to reopen this question 1 year ago and left it closed:
Improve this questionOriginal close reason(s) were not resolved
Can anyone give an example of code in C / C + + that creates histograms for a colored image (RGB) and displays them?
See vz::plot_histogram(), written in C++. https://www.ccoderun.ca/programming/doxygen/vz_imagination/namespacevz.html#a4cf3b5cd26b8cc8ac28fdbb8355f56a5
In case the link goes dead, the relevant code looks like this:
// "src" is the cv::Mat input image
const size_t number_of_channels = src.channels();
const cv::Scalar background_colour(0,0,0);
std::vector<cv::Mat> split;
cv::split(src, split);
const int height = 480;
const int width = 640;
const int histogram_size = 256; // the number of "bins"
const float range[] = {0, 256}; // upper bound is exclusive, meaning 0-255
const float * ranges = {range};
const bool uniform = true;
const bool accumulate = false;
cv::Mat mask;
// prepare the destination image
const int margin = 3;
const int min_y = margin;
const int max_y = height - margin;
const int thickness = 1;
const int line_type = cv::LINE_AA;
const float bin_width = static_cast<float>(width) / static_cast<float>(histogram_size);
cv::Mat dst(height, width, CV_8UC3, background_colour); // create the output image, starting with a pure colour
cv::Scalar colours[] =
{
{255, 0, 0}, // blue
{0, 255, 0}, // green
{0, 0, 255} // red
};
if (number_of_channels == 1)
{
// for greyscale images, we only have a single colour channel, so ignore
// the RGB colour definitions and use either black or white for the histogram
colours[0] = (background_colour == cv::Scalar(0, 0, 0)) ?
cv::Scalar(255, 255, 255) :
cv::Scalar(0, 0, 0);
}
// iterate through all the channels in this image
for (size_t idx=0; idx < split.size(); idx++)
{
const cv::Scalar colour = colours[idx % 3];
cv::Mat & m = split[idx];
cv::Mat histogram;
cv::calcHist(&m, 1, 0, mask, histogram, 1, &histogram_size, &ranges, uniform, accumulate);
cv::normalize(histogram, histogram, 0, dst.rows, cv::NORM_MINMAX);
for (int i = 1; i < histogram_size; i++)
{
const int x1 = std::round(bin_width * (i - 1));
const int x2 = std::round(bin_width * (i - 0));
const int y1 = std::clamp(height - static_cast<int>(std::round(histogram.at<float>(i - 1))), min_y, max_y);
const int y2 = std::clamp(height - static_cast<int>(std::round(histogram.at<float>(i - 0))), min_y, max_y);
cv::line(dst, cv::Point(x1, y1), cv::Point(x2, y2), colour, thickness, line_type);
}
}
// histogram is in "dst"
Resulting histograms should look something like this:
精彩评论